Ma, CY orcid.org/0000-0002-4576-7411, Geatches, D, Hsiao, Y-W et al. (2 more authors) (2023) Role of Molecular, Crystal, and Surface Chemistry in Directing the Crystallization of Entacapone Polymorphs on the Au(111) Template Surface. Crystal Growth & Design, 23 (6). pp. 4522-4537. ISSN 1528-7483
Abstract
The pharmaceutical compound entacapone ((E)-2-cyano-3-(3,4-dihydroxy-5-nitrophenyl)-N,N-diethylprop-2-enamide) is important in the treatment of Parkinson’s disease, exhibiting interesting polymorphic behavior upon crystallization from solution. It consistently produces its stable form A with a uniform crystal size distribution on the surface of an Au(111) template while concomitantly forming its metastable form D within the same bulk solution. Molecular modeling using empirical atomistic force-fields reveals more complex molecular and intermolecular structures for form D compared to form A, with the crystal chemistry of both polymorphs being dominated by van der Waals and π–π stacking interactions with lower contributions (ca. 20%) from hydrogen bonding and electrostatic interactions. Comparative lattice energies and convergence for the polymorphs are consistent with the observed concomitant polymorphic behavior. Synthon characterization reveals an elongated needle-like morphology for form D crystals in contrast to the more equant form A crystals with the surface chemistry of the latter exposing the molecules’ cyano groups on its {010} and {011} habit faces. Density functional theory modeling of surface adsorption reveals preferential interactions between Au and the synthon GA interactions of form A on the Au surface. Molecular dynamics modeling of the entacapone/gold interface reveals the entacapone molecular structure within the first adsorbed layer to show nearly identical interaction distances, for both the molecules within form A or D with respect to the Au surface, while in the second and third layers when entacapone molecule–molecule interactions overtake the interactions between those of molecule–Au, the intermolecular structures are found to be closer to the form A structure than form D. In these layers, synthon GA (form A) could be reproduced with just two small azimuthal rotations (5° and 15°) whereas the closest alignment to a form D synthon requires larger azimuthal rotations (15° and 40°). The cyano functional group interactions with the Au template dominate interfacial interactions with these groups being aligned parallel to the Au surface and with nearest neighbor distances to Au atoms more closely matching those in form A than form D. The overall polymorph direction pathway thus encompasses consideration of molecular, crystal, and surface chemistry factors.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 The Authors. Published by American Chemical Society. This is an open access article published under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) |
Funding Information: | Funder Grant number Innovate UK fka Technology Strategy Board (TSB) TS/T011262/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 08 Jun 2023 13:42 |
Last Modified: | 20 Jul 2023 13:46 |
Published Version: | https://pubs.acs.org/doi/10.1021/acs.cgd.3c00294 |
Status: | Published |
Publisher: | American Chemical Society |
Identification Number: | 10.1021/acs.cgd.3c00294 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:199870 |