Mclean, J.H. orcid.org/0000-0003-0594-7634, Jones, M.R., O’Connell, B.J. et al. (2 more authors) (2023) Physically meaningful uncertainty quantification in probabilistic wind turbine power curve models as a damage-sensitive feature. Structural Health Monitoring, 22 (6). pp. 3623-3636. ISSN 1475-9217
Abstract
A wind turbines’ power curve is an easily accessible form of damage-sensitive data, and as such is a key part of structural health monitoring (SHM) in wind turbines. Power curve models can be constructed in a number of ways, but the authors argue that probabilistic methods carry inherent benefits in this use case, such as uncertainty quantification and allowing uncertainty propagation analysis. Many probabilistic power curve models have a key limitation in that they are not physically meaningful – they return mean and uncertainty predictions outside of what is physically possible (the maximum and minimum power outputs of the wind turbine). This paper investigates the use of two bounded Gaussian processes (GPs) in order to produce physically meaningful probabilistic power curve models. The first model investigated was a warped heteroscedastic Gaussian process, and was found to be ineffective due to specific shortcomings of the GP in relation to the warping function. The second model – an approximated GP with a Beta likelihood was highly successful and demonstrated that a working bounded probabilistic model results in better predictive uncertainty than a corresponding unbounded one without meaningful loss in predictive accuracy. Such a bounded model thus offers increased accuracy for performance monitoring and increased operator confidence in the model due to guaranteed physical plausibility.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2023. This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
Keywords: | Gaussian process; uncertainty quantification; Bayesian; probabilistic power curve; wind turbine |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Mechanical Engineering (Sheffield) |
Funding Information: | Funder Grant number ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL EP/S001565/1 ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL EP/W002140/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 02 Jun 2023 15:19 |
Last Modified: | 23 Oct 2023 13:42 |
Status: | Published |
Publisher: | SAGE Publications |
Refereed: | Yes |
Identification Number: | 10.1177/14759217231155379 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:199615 |