Byrd, EJ orcid.org/0000-0002-9876-1400, Wilkinson, M orcid.org/0000-0001-5490-613X, Radford, SE orcid.org/0000-0002-3079-8039 et al. (1 more author) (2023) Taking Charge: Metal Ions Accelerate Amyloid Aggregation in Sequence Variants of α-Synuclein. Journal of the American Society for Mass Spectrometry, 34 (3). pp. 493-504. ISSN 1044-0305
Abstract
Αlpha-synuclein (αS) is an intrinsically disordered protein which exhibits a high degree of conformational heterogeneity. In vivo, αS experiences various environments which cause adaptation of its structural ensemble. Divalent metal ions are prominent in synaptic terminals where αS is located and are thought to bind to the αS C-terminal region. Herein, we used native nanoelectrospray ionization ion mobility-mass spectrometry to investigate changes in the charge state distribution and collision cross sections of wild-type N-terminally acetylated (NTA) αS, along with a deletion variant (ΔΔNTA) which inhibits amyloid formation and a C-terminal truncated variant (119NTA) which increases the rate of amyloid formation. We also examine the effect of the addition of divalent metal ions, Ca2+, Mn2+, and Zn2+, and correlate the conformational properties of the αS monomer with the ability to aggregate into amyloid, measured using Thioflavin T fluorescence and negative stain transmission electron microscopy. We find a correlation between the population of species with a low collision cross section and accelerated amyloid assembly kinetics, with the presence of metal ions resulting in protein compaction and causing ΔΔ to regain its ability to form an amyloid. The results portray how the αS conformational ensemble is governed by specific intramolecular interactions that influence its amyloidogenic behavior.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 The Authors. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) > School of Molecular and Cellular Biology (Leeds) > Structural Molecular Biology (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 23 May 2023 11:01 |
Last Modified: | 25 Jun 2023 23:21 |
Status: | Published |
Publisher: | American Chemical Society (ACS) |
Identification Number: | 10.1021/jasms.2c00379 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:199479 |