He, L, Tao, M, Liu, Z et al. (17 more authors) (2023) Biomass valorization toward sustainable asphalt pavements: Progress and prospects. Waste Management, 165. pp. 159-178. ISSN 0956-053X
Abstract
To cope with the global climate crisis and assist in achieving the carbon neutrality, the use of biomass materials to fully or partially replace petroleum-based products and unrenewable resources is expected to become a widespread solution. Based on the analysis of the existing literature, this paper firstly classified biomass materials with potential application prospects in pavement engineering according to their application and summarized their respective preparation methods and characteristics. The pavement performance of asphalt mixtures with biomass materials was analyzed and summarized, and the economic and environmental benefits of bio-asphalt binder were evaluated. The analysis shows that pavement biomass materials with potential for practical application can be divided into three categories: bio-oil, bio-fiber, and bio-filler. Adding bio-oil to modify or extend the virgin asphalt binder can mostly improve the low temperature performance of asphalt binder. Adding styrene-butadienestyrene (SBS) or other preferable bio-components for composite modification will have a further improved effect. Most of the asphalt mixtures prepared by using bio-oil modified asphalt binders have improved the low temperature crack resistance and fatigue resistance of asphalt mixtures, but the high temperature stability and moisture resistance may decrease. As a rejuvenator, most bio-oils can restore the high and low temperature performance of aged asphalt and recycled asphalt mixture, and improve fatigue resistance. Adding bio-fiber could significantly improve the high temperature stability, low temperature crack resistance and moisture resistance of asphalt mixtures. Biochar as a bio-filler can slow down the asphalt aging process and some other bio-fillers can improve the high temperature stability and fatigue resistance of asphalt binders. Through calculation, it is found that the cost performance of bio-asphalt has the ability to surpass conventional asphalt and has economic benefits. The use of biomass materials for pavements not only reduces pollutants, but also reduces the dependence on petroleum-based products. It has significant environmental benefits and development potential.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 Elsevier Ltd. All rights reserved. This is an author produced version of an article published in Waste Management made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0) in accordance with the publisher's self-archiving policy. |
Keywords: | Asphalt pavement; Biomass material; Bio-oil; Bio-fiber; Bio-filler |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > Institute for Transport Studies (Leeds) > ITS: Spatial Modelling and Dynamics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 12 May 2023 09:06 |
Last Modified: | 11 May 2024 00:13 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.wasman.2023.03.035 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:199115 |