Cox, DR, Huuse, M, Newton, AMW et al. (2 more authors) (2021) Shallow gas and gas hydrate occurrences on the northwest Greenland shelf margin. Marine Geology, 432. 106382. ISSN 0025-3227
Abstract
An extensive 3D seismic dataset was used to investigate the contemporary hydrocarbon distribution and historical fluid migration in Melville Bay offshore northwest Greenland, providing the first inventory of shallow gas and gas hydrate along this part of the Greenland margin. The shallow gas anomalies vary in seismic character and have been subdivided into four categories that represent (I) isolated shallow gas, (II) free gas trapped at the base of the gas hydrate stability zone (GHSZ), (III) gas charged glacial clinoforms and (IV) a giant mass transport deposit gas reservoir. Gas hydrate deposits have been identified across an area of 537 km² via the identification of a discontinuous bottom simulating reflector (BSR) that marks the base of the GHSZ. The BSR has been used to estimate a geothermal gradient of 49 °C/km across the GHSZ and a heat flow of 70–90 mW/m², providing the first publically available heat flow estimates offshore western Greenland. The contemporary hydrocarbon distribution and historical fluid migration is influenced by the underlying paleo-rift topography and multiple shelf edge glaciations since ~2.7 Ma. Continued uplift of the Melville Bay Ridge, as well as glacial-sediment redistribution and basinward margin tilting from isostatic compensation, have led to a concentration of gas within the Cenozoic stratigraphy above the ridge. Furthermore, repeated variations in subsurface conditions during glacial-interglacial cycles likely promoted fluid remigration, and possibly contributed to reservoir leakage and increased fluid migration through faults. The top of the gas hydrate occurrence at 650 m water depth is well below the hydrate-free gas phase boundary (~350 m) for the present bottom-water temperature of 1.5 °C, suggesting this hydrate province mainly adjusted to glacial-interglacial changes by expansion and dissociation at its base and is relatively inert to current levels of global warming. Glacial-related dissociation may have significantly contributed to the numerous free gas accumulations observed below the GHSZ at present day.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
Keywords: | (max 6), Shallow gas, gas hydrate, seismic anomalies, fluid migration, bottom simulating reflector, glaciation |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Institute for Applied Geosciences (IAG) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 04 May 2023 09:53 |
Last Modified: | 25 Jun 2023 23:20 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.margeo.2020.106382 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:198800 |