Italia, M. orcid.org/0000-0001-9633-8396, Wertheim, K.Y. orcid.org/0000-0002-4152-2898, Taschner-Mandl, S. orcid.org/0000-0002-1439-5301 et al. (2 more authors) (2023) Mathematical model of clonal evolution proposes a personalised multi-modal therapy for high-risk neuroblastoma. Cancers, 15 (7). 1986. ISSN 2072-6694
Abstract
Neuroblastoma is the most common extra-cranial solid tumour in children. Despite multi-modal therapy, over half of the high-risk patients will succumb. One contributing factor is the one-size-fits-all nature of multi-modal therapy. For example, during the first step (induction chemotherapy), the standard regimen (rapid COJEC) administers fixed doses of chemotherapeutic agents in eight two-week cycles. Perhaps because of differences in resistance, this standard regimen results in highly heterogeneous outcomes in different tumours. In this study, we formulated a mathematical model comprising ordinary differential equations. The equations describe the clonal evolution within a neuroblastoma tumour being treated with vincristine and cyclophosphamide, which are used in the rapid COJEC regimen, including genetically conferred and phenotypic drug resistance. The equations also describe the agents’ pharmacokinetics. We devised an optimisation algorithm to find the best chemotherapy schedules for tumours with different pre-treatment clonal compositions. The optimised chemotherapy schedules exploit the cytotoxic difference between the two drugs and intra-tumoural clonal competition to shrink the tumours as much as possible during induction chemotherapy and before surgical removal. They indicate that induction chemotherapy can be improved by finding and using personalised schedules. More broadly, we propose that the overall multi-modal therapy can be enhanced by employing targeted therapies against the mutations and oncogenic pathways enriched and activated by the chemotherapeutic agents. To translate the proposed personalised multi-modal therapy into clinical use, patient-specific model calibration and treatment optimisation are necessary. This entails a decision support system informed by emerging medical technologies such as multi-region sequencing and liquid biopsies. The results and tools presented in this paper could be the foundation of this decision support system.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | clonal evolution; drug delivery; evolutionary computation; mathematical model; neuroblastoma; ordinary differential equations; drug resistance; population dynamics; precision medicine |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Computer Science (Sheffield) |
Funding Information: | Funder Grant number EUROPEAN COMMISSION - HORIZON 2020 826494 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 21 Apr 2023 10:55 |
Last Modified: | 21 Apr 2023 10:55 |
Status: | Published |
Publisher: | MDPI AG |
Refereed: | Yes |
Identification Number: | 10.3390/cancers15071986 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:198348 |