Chan, SC, Kendon, EJ, Fowler, HJ et al. (4 more authors) (2023) Large-scale dynamics moderate impact-relevant changes to organised convective storms. Communications Earth & Environment, 4. 8. ISSN 2662-4435
Abstract
Larger organised convective storms (mesoscale-convective systems) can lead to major flood events in Europe. Here we assess end-of-century changes to their characteristics in two convection-permitting climate simulations from the UK Met Office and ETH-Zürich that both use the high Representative Concentration Pathway 8.5 scenario but different approaches to represent atmospheric changes with global warming and different models. The UK Met Office projections indicate more frequent, smaller, and slower-moving storms, while ETH-Zürich projections show fewer, larger, and faster-moving storms. However, both simulations show increases to peak precipitation intensity, total precipitation volume, and temporal clustering, suggesting increasing risks from mesoscale-convective systems in the future. Importantly, the largest storms that pose increased flood risks are projected to increase in frequency and intensity. These results highlight that understanding large-scale dynamical drivers as well as the thermodynamical response of storms is essential for accurate projections of changes to storm hazards, needed for future climate adaptation.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst for Climate & Atmos Science (ICAS) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 29 Mar 2023 10:22 |
Last Modified: | 29 Mar 2023 10:22 |
Status: | Published |
Publisher: | Nature Research |
Identification Number: | 10.1038/s43247-022-00669-2 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:197785 |