Völter, F., Beyer, L., Eckenweber, F. et al. (17 more authors) (2023) Assessment of perfusion deficit with early phases of [18F]PI-2620 tau-PET versus [18F]flutemetamol-amyloid-PET recordings. European Journal of Nuclear Medicine and Molecular Imaging, 50 (5). pp. 1384-1394. ISSN 1619-7070
Abstract
Purpose Characteristic features of amyloid-PET (A), tau-PET (T), and FDG-PET (N) can serve for the A/T/N classification of neurodegenerative diseases. Recent studies showed that the early, perfusion-weighted phases of amyloid- or tau-PET recordings serve to detect cerebrometabolic deficits equally to FDG-PET, therefore providing a surrogate of neuronal injury. As such, two channels of diagnostic information can be obtained in the setting of a single PET scan. However, there has hitherto been no comparison of early-phase amyloid- and tau-PET as surrogates for deficits in perfusion/metabolism. Therefore, we undertook to compare [18F]flutemetamol-amyloid-PET and [18F]PI-2620 tau-PET as “one-stop shop” dual purpose tracers for the detection of neurodegenerative disease.
Methods We obtained early-phase PET recordings with [18F]PI-2620 (0.5–2.5 min p.i.) and [18F]flutemetamol (0–10 min p.i.) in 64 patients with suspected neurodegenerative disease. We contrasted global mean normalized images (SUVr) in the patients with a normal cohort of 15 volunteers without evidence of increased pathology to β-amyloid- and tau-PET examinations. Regional group differences of tracer uptake (z-scores) of 246 Brainnetome volumes of interest were calculated for both tracers, and the correlations of the z-scores were evaluated using Pearson’s correlation coefficient. Lobar compartments, regions with significant neuronal injury (z-scores < − 3), and patients with different neurodegenerative disease entities (e.g., Alzheimer’s disease or 4R-tauopathies) served for subgroup analysis. Additionally, we used partial regression to correlate regional perfusion alterations with clinical scores in cognition tests.
Results The z-scores of perfusion-weighted images of both tracers showed high correlations across the brain, especially in the frontal and parietal lobes, which were the brain regions with pronounced perfusion deficit in the patient group (R = 0.83 ± 0.08; range, 0.61–0.95). Z-scores of individual patients correlated well by region (R = 0.57 ± 0.15; range, 0.16–0.90), notably when significant perfusion deficits were present (R = 0.66 ± 0.15; range, 0.28–0.90).
Conclusion The early perfusion phases of [18F]PI-2620 tau- and [18F]flutemetamol-amyloid-PET are roughly equivalent indices of perfusion defect indicative of regional and lobar neuronal injury in patients with various neurodegenerative diseases. As such, either tracer may serve for two diagnostic channels by assessment of amyloid/tau status and neuronal activity.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2022. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Neuroimaging; Perfusion phase; [18F]Flutemetamol; [18F]PI-2620; Humans; Neurodegenerative Diseases; Fluorodeoxyglucose F18; Alzheimer Disease; Amyloid; Aniline Compounds; Brain; Positron-Emission Tomography; Perfusion |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > Department of Neuroscience (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 27 Mar 2023 13:34 |
Last Modified: | 27 Mar 2023 13:36 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s00259-022-06087-y |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:197735 |