Preiss, J. orcid.org/0000-0002-2158-5832 (2023) Predicting the impact of online news articles – is information necessary? Multimedia Tools and Applications, 82 (6). pp. 8791-8809. ISSN 1380-7501
Abstract
We exploit the Twitter platform to create a dataset of news articles derived from tweets concerning COVID-19, and use the associated tweets to define a number of popularity measures. The focus on (potentially) biomedical news articles allows the quantity of biomedically valid information (as extracted by biomedical relation extraction) to be included in the list of explored features. Aside from forming part of a systematic correlation exploration, the features – ranging from the semantic relations through readability measures to the article’s digital content – are used within a number of machine learning classifier and regression algorithms. Unsurprisingly, the results support that for more complex articles (as determined by a readability measure) more sophisticated syntactic structure may be expected. A weak correlation is found with information within an article suggesting that other factors, such as numbers of videos, have a notable impact on the popularity of a news article. The best popularity prediction performance is obtained using a random forest machine learning algorithm, and the feature describing the quantity of biomedical information is in the top 3 most important features in almost a third of the experiments performed. Additionally, this feature is found to be more valuable than the widely used named entity recognition.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2021. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Grammatical relations; Popularity prediction; SemRep relations; Twitter |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Social Sciences (Sheffield) > Information School (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 21 Mar 2023 12:12 |
Last Modified: | 21 Mar 2023 12:12 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s11042-021-11621-5 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:197497 |