Zhao, H., Trivedi, D., Roostaeinia, M. et al. (8 more authors) (2023) Spatial charge separation on the (110)/(102) facets of cocatalyst-free ZnIn2S4 for the selective conversion of 5-hydroxymethylfurfural to 2,5-diformylfuran. Green Chemistry, 25 (2). pp. 692-699. ISSN 1463-9262
Abstract
Photorefining of biomass and its derivatives to value-added chemicals is an alternative solution to address the global energy shortage and environmental issues. Herein, efficient and selective oxidation of 5-hydroxymethylfurfural (HMF, 91.1% conversion) to 2,5-diformylfuran (DFF, 99.4% selectivity) is demonstrated by visible light-driven photocatalysis over cocatalyst-free ZnIn2S4 nanosheets with crystal facet engineering. The spatial accumulation of photogenerated electrons and holes on the (110) and (102) crystal facets triggers a two-electron oxygen reduction reaction (2e-ORR) for H2O2 generation and HMF oxidation into DFF, respectively. The severe attenuation of photostability is caused by the irreversible photocorrosion of Zn–S with the formation of Zn–O chemical bonds by the formation of ˙OH from the in situ decomposition of H2O2. Spontaneous substitution of oxygen with sulfur has been proven to efficiently improve the photostability of ZnIn2S4. This present work provides insights into improving the durability of ZnIn2S4 and sheds new light on biomass valorization via photorefinery.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 The Royal Society of Chemistry. |
Keywords: | Affordable and Clean Energy |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > Department of Chemistry (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 02 Feb 2023 14:07 |
Last Modified: | 02 Feb 2023 14:10 |
Status: | Published |
Publisher: | Royal Society of Chemistry (RSC) |
Refereed: | Yes |
Identification Number: | 10.1039/d2gc04362a |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:195991 |