Debgupta, Joyashish orcid.org/0000-0002-3932-8500, Lari, Leonardo orcid.org/0000-0002-1446-2877, Isaacs, Mark et al. (5 more authors) (2022) Predictive Removal of Interfacial Defect-Induced Trap States between Titanium Dioxide Nanoparticles via Sub-Monolayer Zirconium Coating. Journal of Physical Chemistry C. ISSN 1932-7455
Abstract
First principles modeling of anatase TiO2 surfaces and their interfacial contacts shows that defect-induced trap states within the band gap arise from intrinsic structural distortions, and these can be corrected by modification with Zr(IV) ions. Experimental testing of these predictions has been undertaken using anatase nanocrystals modified with a range of Zr precursors and characterized using structural and spectroscopic methods. Continuous-wave electron paramagnetic resonance (EPR) spectroscopy revealed that under illumination, nanoparticle-nanoparticle interfacial hole trap states dominate, which are significantly reduced after optimizing the Zr doping. Fabrication of nanoporous films of these materials and charge injection using electrochemical methods shows that Zr doping also leads to improved electron conductivity and mobility in these nanocrystalline systems. The simple methodology described here to reduce the concentration of interfacial defects may have wider application to improving the efficiency of systems incorporating metal oxide powders and films including photocatalysts, photovoltaics, fuel cells, and related energy applications.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 The Authors Funding Information: The authors thank the University of York and EPSRC for financial support (EP/P006051). This work made use of the facilities of Archer, the UK’s national high-performance computing service, via our membership in the UK HPC Materials Chemistry Consortium, which is funded by EPSRC (Nos. EP/L000202, EP/R029431). This work also made use of the Viking Cluster, which is a high-performance computer facility provided by the University of York. All data created during this research are available by request from the University of York Research database. |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Chemistry (York) The University of York > Faculty of Sciences (York) > Physics (York) |
Funding Information: | Funder Grant number EPSRC EP/P006051/1 |
Depositing User: | Pure (York) |
Date Deposited: | 06 Jan 2023 13:40 |
Last Modified: | 01 Dec 2024 01:21 |
Published Version: | https://doi.org/10.1021/acs.jpcc.2c06927 |
Status: | Published online |
Refereed: | Yes |
Identification Number: | 10.1021/acs.jpcc.2c06927 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:194993 |
Download
Filename: acs.jpcc.2c06927.pdf
Description: Predictive Removal of Interfacial Defect-Induced Trap States between Titanium Dioxide Nanoparticles via Sub-Monolayer Zirconium Coating
Licence: CC-BY 2.5