Srivastava, A, Chanda, S, Jha, D et al. (2 more authors) (2022) GMSRF-Net: An Improved generalizability with Global Multi-Scale Residual Fusion Network for Polyp Segmentation. In: 2022 26th International Conference on Pattern Recognition (ICPR). 26th International Conference on Pattern Recognition (ICPR), 21-25 Aug 2022, Montreal, QC, Canada. IEEE , pp. 4321-4327. ISBN 9781665490627
Abstract
Colonoscopy is a gold standard procedure but is highly operator-dependent. Efforts have been made to automate the detection and segmentation of polyps, a precancerous precursor, to effectively minimize missed rate. Widely used computer-aided polyp segmentation systems actuated by encoder-decoder have achieved high performance in terms of accuracy. However, polyp segmentation datasets collected from varied centers can follow different imaging protocols leading to difference in data distribution. As a result, most methods suffer from performance drop when trained and tested on different distributions and therefore, require re-training for each specific dataset. We address this generalizability issue by proposing a global multi-scale residual fusion network (GMSRF-Net). Our proposed network maintains high-resolution representations by performing multi-scale fusion operations across all resolution scales through dense connections while preserving low-level information. To further leverage scale information, we design cross multi-scale attention (CMSA) module that uses multi-scale features to identify, keep, and propagate informative features. Additionally, we introduce multi-scale feature selection (MSFS) modules to perform channel-wise attention that gates irrelevant features gathered through global multi-scale fusion within the GMSRF-Net. The repeated fusion operations gated by CMSA and MSFS demonstrate improved generalizability of our network.Experiments conducted on two different polyp segmentation datasets show that our proposed GMSRF-Net outperforms the previous top-performing state-of-the-art method by 8.34% and 10.31% on unseen CVC-ClinicDB and on unseen Kvasir-SEG, in terms of dice coefficient. Additionally, when tested on unseen CVC-ColonDB, we surpass the state-of-the-art method by 9.38% and 4.04% in terms of dice coefficient, when source dataset is Kvasir-SEG and CVC-ClinicDB, respectively.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Computing (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 06 Jan 2023 08:42 |
Last Modified: | 06 Jan 2023 16:24 |
Status: | Published |
Publisher: | IEEE |
Identification Number: | 10.1109/ICPR56361.2022.9956726 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:194693 |