Zhang, H., Liu, F., Ungar, G. orcid.org/0000-0002-9743-2656 et al. (3 more authors) (2022) A regime beyond the Hall–Petch and inverse-Hall–Petch regimes in ultrafine-grained solids. Communications Physics, 5. 329. ISSN 2399-3650
Abstract
The strength of polycrystal increases as the grain diameter l decreases, i.e. the Hall–Petch behaviour. This trend reverses at about 3 < l < 15 nm, i.e. the inverse-Hall–Petch behaviour. How the grain size affects material’s strength at l < 3 nm (~12 particles) remains unclear. Here our simulations use mixtures of soft and hard particles so that compression can continuously reduce l to merely a few particles, resulting in ultrafine-grained solids termed as glass-crystal composites. Beyond the conventional Hall–Petch strengthening and inverse-Hall–Petch softening, we observe a power-law strengthening at l < 14 particles as a result of the blockage of shear-banding by crystalline grains. Amorphous and crystalline regions accommodate shear strains via bond-breaking and collective rotation, respectively. Moreover, a polycrystal–glass transition occurs at l = 14 particles featured with peaks of various quantities, which deepens the understanding on softening–strengthening transition.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Glasses; Mechanical properties |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 20 Dec 2022 16:44 |
Last Modified: | 20 Dec 2022 16:44 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s42005-022-01107-7 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:194558 |