Haridas, A.K., Sadan, M.K., Kim, J.-H. et al. (2 more authors) (2022) Electrospun interconnected bead-like P2-NaxCoyMn1−yO2 (x = 0.66, y = 0.1) cathode material for stable sodium-ion storage. Batteries, 8 (11). 237. ISSN 2313-0105
Abstract
The development of high-rate and long-cycle-life Na-based cathode materials, on par with the performance of commercialized lithium-based cathodes, is crucial to satisfy the recurring surge in energy demand. Here, we report an interconnected bead-like P2-type manganese-based oxide NaxCoyMn1−yO2 (x = 0.66, y = 0.1) synthesized by electrospinning and subsequent heat treatment as a high-rate cathode material for sodium-ion batteries (SIBs). The employed strategy of one-dimensional morphological design with interconnected bead-like particles profusely enhances Na+ diffusion pathways. This layered cathode material exhibits a stable and superior discharge capacity of 180.0 mAh g−1 at 50 mA g−1 compared to a bare cathode material synthesized via the sol–gel process. Further, a high capacity of 78.3 mAh g−1 was achieved, maintaining excellent capacity retention of 85.0% even after 500 insertion/desertion cycles implying robust Na+ storage properties. High-rate tests also revealed promising electrochemical performances at C-rates as high as 5000 mA g−1, affirming the potential of this layered cathode material for high-rate Na+ storage. Additionally, full SIBs assembled with a NaxCoyMn1−yO2 (x = 0.66, y = 0.1) cathode and a carbon nanofiber (CNF) anode exhibited a high cycle performance, retaining 96.3 mAh g−1 after 100 cycles at 300 mA g−1.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | electrospinning; P2-layered transition metal oxide; cathode material; high-rate; sodium-ion batteries |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Chemical and Biological Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 16 Dec 2022 17:04 |
Last Modified: | 16 Dec 2022 17:04 |
Status: | Published |
Publisher: | MDPI AG |
Refereed: | Yes |
Identification Number: | 10.3390/batteries8110237 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:194425 |