Smith, AF orcid.org/0000-0001-7709-1869, Frempong, SN, Sharma, N et al. (3 more authors) (2022) An exploratory assessment of the impact of a novel risk assessment test on breast cancer clinic waiting times and workflow: a discrete event simulation model. BMC Health Services Research, 22. 1301. ISSN 1472-6963
Abstract
Background
Breast cancer clinics across the UK have long been struggling to cope with high demand. Novel risk prediction tools – such as the PinPoint test – could help to reduce unnecessary clinic referrals. Using early data on the expected accuracy of the test, we explore the potential impact of PinPoint on: (a) the percentage of patients meeting the two-week referral target, and (b) the number of clinic ‘overspill’ appointments generated (i.e. patients having to return to the clinic to complete their required investigations).
Methods
A simulation model was built to reflect the annual flow of patients through a single UK clinic. Due to current uncertainty around the exact impact of PinPoint testing on standard care, two primary scenarios were assessed. Scenario 1 assumed complete GP adherence to testing, with only non-referred cancerous cases returning for delayed referral. Scenario 2 assumed GPs would overrule 20% of low-risk results, and that 10% of non-referred non-cancerous cases would also return for delayed referral. A range of sensitivity analyses were conducted to explore the impact of key uncertainties on the model results. Service reconfiguration scenarios, removing individual weekly clinics from the clinic schedule, were also explored.
Results
Under standard care, 66.3% (95% CI: 66.0 to 66.5) of patients met the referral target, with 1,685 (1,648 to 1,722) overspill appointments. Under both PinPoint scenarios, > 98% of patients met the referral target, with overspill appointments reduced to between 727 (707 to 746) [Scenario 1] and 886 (861 to 911) [Scenario 2]. The reduced clinic demand was sufficient to allow removal of one weekly low-capacity clinic [N = 10], and the results were robust to sensitivity analyses.
Conclusion
The findings from this early analysis indicate that risk prediction tools could have the potential to alleviate pressure on cancer clinics, and are expected to have increased utility in the wake of heightened pressures resulting from the COVID-19 pandemic. Further research is required to validate these findings with real world evidence; evaluate the broader clinical and economic impact of the test; and to determine outcomes and risks for patients deemed to be low-risk on the PinPoint test and therefore not initially referred.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2022. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Breast neoplasms, Secondary Care Centres, Computer Simulation |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds) > Leeds Institute of Health Sciences (Leeds) > Academic Unit of Health Economics (Leeds) |
Funding Information: | Funder Grant number Innovate UK fka Technology Strategy Board (TSB) 105411 |
Depositing User: | Symplectic Publications |
Date Deposited: | 26 Oct 2022 12:10 |
Last Modified: | 25 Jun 2023 23:08 |
Status: | Published |
Publisher: | BMC |
Identification Number: | 10.1186/s12913-022-08665-0 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:192518 |