Kwon, M.J., Ballantyne, A., Ciais, P. et al. (12 more authors) (2022) Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands. Global Change Biology, 28 (22). pp. 6752-6770. ISSN 1354-1013
Abstract
Peatlands at high latitudes have accumulated >400 Pg carbon (C) because saturated soil and cold temperatures suppress C decomposition. This substantial amount of C in Arctic and Boreal peatlands is potentially subject to increased decomposition if the water table (WT) decreases due to climate change, including permafrost thaw-related drying. Here, we optimize a version of the Organizing Carbon and Hydrology In Dynamic Ecosystems model (ORCHIDEE-PCH4) using site-specific observations to investigate changes in CO2 and CH4 fluxes as well as C stock responses to an experimentally manipulated decrease of WT at six northern peatlands. The unmanipulated control peatlands, with the WT <20 cm on average (seasonal max up to 45 cm) below the surface, currently act as C sinks in most years (58 ± 34 g C m−2 year−1; including 6 ± 7 g C–CH4 m−2 year−1 emission). We found, however, that lowering the WT by 10 cm reduced the CO2 sink by 13 ± 15 g C m−2 year−1 and decreased CH4 emission by 4 ± 4 g CH4 m−2 year−1, thus accumulating less C over 100 years (0.2 ± 0.2 kg C m−2). Yet, the reduced emission of CH4, which has a larger greenhouse warming potential, resulted in a net decrease in greenhouse gas balance by 310 ± 360 g CO2-eq m−2 year−1. Peatlands with the initial WT close to the soil surface were more vulnerable to C loss: Non-permafrost peatlands lost >2 kg C m−2 over 100 years when WT is lowered by 50 cm, while permafrost peatlands temporally switched from C sinks to sources. These results highlight that reductions in C storage capacity in response to drying of northern peatlands are offset in part by reduced CH4 emissions, thus slightly reducing the positive carbon climate feedbacks of peatlands under a warmer and drier future climate scenario.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, (http://creativecommons.org/licenses/by-nc/4.0/) which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
Keywords: | carbon flux; carbon stock; drainage; high latitude; land surface model; manipulation experiment; permafrost thaw |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Biosciences (Sheffield) > Department of Animal and Plant Sciences (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 21 Sep 2022 16:22 |
Last Modified: | 04 Nov 2022 12:25 |
Status: | Published |
Publisher: | Wiley |
Refereed: | Yes |
Identification Number: | 10.1111/gcb.16394 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:190653 |