Mountney, NP orcid.org/0000-0002-8356-9889 and Hême de Lacotte, VJP (2022) A classification scheme for sedimentary architectures arising from aeolian-fluvial system interactions: Permian examples from southeast Utah, USA. Aeolian Research, 58. 100815. ISSN 1875-9637
Abstract
The preservation of the sedimentary deposits of arid environments is determined by both geomorphic and geologic processes. Sedimentary evidence of aeolian-fluvial system interactions in arid-climate settings are preserved in both recent and ancient sedimentary successions. However, despite considerable prior sedimentological research, there is no unifying scheme to provide generalized definitions of commonly occurring types of preserved aeolian-fluvial interactions. This study addresses this shortcoming by introducing a novel classification scheme for sedimentary architectures arising from such system interactions. The scheme is demonstrated through reference to examples from the Permian Cutler Group, Paradox Basin, Southeast Utah, USA – a sedimentary record of competing aeolian dune-field and fluvial-fan systems along a palaeo-coastline. Well-preserved, laterally continuous outcrops arranged in different orientations enable three-dimensional architectural characterization. The sedimentary record of eight distinct types of aeolian-fluvial interaction are identified: (i) water-table-controlled interdune sedimentation; (ii) deposits of low-energy fluvial floods; (iii) isolated fluvial channel-fills originating from episodic and confined flooding of interdunes in orientations parallel to the trend of dune crestlines; (iv) channel fills oriented perpendicular to the trend of dune crestlines; (v) amalgamated fluvial channel elements resulting from persistent, long-lived but confined dune-field flooding; (vi) deposits of unconfined sheet-like flood deposits; (vii) fluvial breaching of dunes and their reworking by catastrophic flooding; (viii) aeolian reworking of fluvial deposits. Each interaction type is characterized in terms of preserved sedimentary facies, architectural element geometries and associated proprieties, to demonstrate sedimentary variability in three dimensions. Results provide a guide with which to make sedimentological comparisons and interpretations between active systems and their preserved depositional record.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 Elsevier B.V. This is an author produced version of an article published in Aeolian Research. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | Aeolian; Fluvial; Dryland; Interdune; Paradox basin; Sedimentary processes |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Institute for Applied Geosciences (IAG) (Leeds) |
Funding Information: | Funder Grant number Nexen Petroleum UK Ltd Not Known Anadarko Petroleum 90286622 |
Depositing User: | Symplectic Publications |
Date Deposited: | 08 Aug 2022 15:02 |
Last Modified: | 10 Aug 2023 00:13 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.aeolia.2022.100815 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:189746 |
Download
Filename: Heme and Mountney 2022 Aeolian Research - accepted version for FRG website.pdf
Licence: CC-BY-NC-ND 4.0