Nunes, CL, Jesus, F, Francisco, R et al. (5 more authors) (2022) Effects of a 4-month active weight loss phase followed by weight loss maintenance on adaptive thermogenesis in resting energy expenditure in former elite athletes. European Journal of Nutrition, 61 (8). pp. 4121-4133. ISSN 1436-6207
Abstract
Purpose
Despite adaptive thermogenesis (AT) being studied as a barrier to weight loss (WL), few studies assessed AT in the resting energy expenditure (REE) compartment after WL maintenance. The aim of this study was twofold: (1) to understand if AT occurs after a moderate WL and if AT persists after a period of WL maintenance; and (2) if AT is associated with changes in body composition, hormones and energy intake (EI).
Methods
Ninety-four participants [mean (SD); BMI, 31.1(4.3)kg/m2; 43.0(9.4)y; 34% female] were randomized to intervention (IG, n = 49) or control groups (CG, n = 45). Subjects underwent a 1-year lifestyle intervention, divided in 4 months of an active WL followed by 8 months of WL maintenance. Fat mass (FM) and fat-free mass (FFM) were measured by dual-energy X-ray absorptiometry and REE by indirect calorimetry. Predicted REE (pREE) was estimated through a model using FM, FFM. EI was measured by the “intake-balance” method.
Results
For the IG, the weight and FM losses were − 4.8 (4.9) and − 11.3 (10.8)%, respectively (p < 0.001). A time–group interaction was found between groups for AT. After WL, the IG showed an AT of -85(29) kcal.d−1 (p < 0.001), and remained significant after 1 year [AT = − 72(31)kcal.d−1, p = 0.031]. Participants with higher degrees of restriction were those with an increased energy conservation (R = − 0.325, p = 0.036 and R = − 0.308, p = 0.047, respectively). No associations were found between diet adherence and AT. Following a sub-analysis in the IG, the group with a higher energy conservation showed a lower WL and fat loss and a higher initial EI.
Conclusion
AT in REE occurred after a moderate WL and remained significant after WL maintenance. More studies are needed to better clarify the mechanisms underlying the large variability observed in AT and providing an accurate methodological approach to avoid overstatements. Future studies on AT should consider not only changes in FM and FFM but also the FFM composition.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Keywords: | Energy balance; Metabolic adaptation; Resting energy expenditure |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Food Science and Nutrition (Leeds) > FSN Nutrition and Public Health (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 19 Jul 2022 08:58 |
Last Modified: | 11 Nov 2022 11:21 |
Status: | Published |
Publisher: | Springer |
Identification Number: | 10.1007/s00394-022-02951-7 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:189147 |