Iflaifel, M., Partlett, C., Bell, J. et al. (7 more authors) (2022) Blinding of study statisticians in clinical trials : a qualitative study in UK clinical trials units. Trials, 23 (1). 535.
Abstract
Background
Blinding is an established approach in clinical trials which aims to minimise the risk of performance and detection bias. There is little empirical evidence to guide UK clinical trials units (CTUs) about the practice of blinding statisticians. Guidelines recommend that statisticians remain blinded to allocation prior to the final analysis. As these guidelines are not based on empirical evidence, this study undertook a qualitative investigation relating to when and how statisticians should be blinded in clinical trials.
Methods
Data were collected through online focus groups with various stakeholders who work in the delivery and oversight of clinical trials. Recordings of the focus groups were transcribed verbatim and thematic analysis was used to analyse the transcripts.
Results
Thirty-seven participants from 19 CTUs participated in one of six focus groups. Four main themes were identified, namely statistical models of work, factors affecting the decision to blind statisticians, benefits of blinding/not blinding statisticians and practicalities. Factors influencing the decision to blind the statistician included available resources, study design and types of intervention and outcomes and analysis.
Although blinding of the statistician is perceived as a desirable mitigation against bias, there was uncertainty about the extent to which an unblinded statistician might impart bias. Instead, in most cases, the insight that the statistician offers was deemed more important to delivery of a trial than the risk of bias they may introduce if unblinded.
Blinding of statisticians was only considered achievable with the appropriate resource and staffing, which were not always available. In many cases, a standard approach to blinding was therefore considered unrealistic and impractical; hence the need for a proportionate risk assessment approach identifying possible mitigations.
Conclusions
There was wide variation in practice between UK CTUs regarding the blinding of trial statisticians. A risk assessment approach would enable CTUs to identify risks associated with unblinded statisticians conducting the final analysis and alternative mitigation strategies. The findings of this study will be used to design guidance and a tool to support this risk assessment process.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 The Author(s). Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
Keywords: | Blinding; Clinical trials; Clinical trials unit; Focus groups; Qualitative; Statisticians |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Health and Related Research (Sheffield) > ScHARR - Sheffield Centre for Health and Related Research |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 05 Jul 2022 12:10 |
Last Modified: | 06 Jul 2022 09:40 |
Status: | Published |
Publisher: | BioMed Central |
Refereed: | Yes |
Identification Number: | 10.1186/s13063-022-06481-9 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:188675 |