Danso-Boateng, E, Ross, AB, Mariner, T et al. (2 more authors) (2022) Hydrochars produced by hydrothermal carbonisation of seaweed, coconut shell and oak: effect of processing temperature on physicochemical adsorbent characteristics. SN Applied Sciences, 4 (8). 203. ISSN 2523-3971
Abstract
The present study addresses the production of hydrochars from brown seaweed (Fucus serratus) (FS-HCs), coconut shell (CS-HCs), and oak (Oak-HCs) as potential adsorbents using hydrothermal carbonisation (HTC). The effect of HTC processing temperature on the physicochemical adsorbent characteristics of the hydrochars is investigated at different temperatures (200, 220, 250 °C) using a hydrothermal batch reactor. Increasing HTC temperature causes the formation of many spheres in CS-HCs and Oak-HCs, increasing their porosity, except FS-HCs. The surface area of the hydrochars increases with increasing HTC temperature; 10.93–12.78 m2/g for FS-HCs, 2.18–21.94 m2/g for CS-HCs, except for Oak-HCs which decreases from 4.89 to 3.09 m2/g. Increasing HTC temperature decreases volatile matter content in the hydrochars, increases fixed carbon content, and decreases H/C ratio (except for FS-HCs) and O/C ratio of the hydrochars. For all the hydrochars, increasing the HTC temperature results in a slight decrease in zeta potential magnitude, with negatively charged surfaces, making them potential adsorbents for cationic pollutants. The study confirms that the HTC process improves key chemical and physical characteristics of the hydrochars compared to the original biomass, and that the physicochemical adsorbent characteristics are enhanced as the processing temperature increases.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Adsorbents; Biomass, biosorbents; Hydrochar; Hydrothermal carbonization; Seaweed |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) |
Funding Information: | Funder Grant number BBSRC (Biotechnology & Biological Sciences Research Council) BB/S011439/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 04 Jul 2022 10:57 |
Last Modified: | 25 Jun 2023 23:01 |
Status: | Published |
Publisher: | Springer |
Identification Number: | 10.1007/s42452-022-05085-x |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:188347 |