Orritt, KM, Feng, L, Newell, JF et al. (9 more authors) (2022) De novo design of type II topoisomerase inhibitors as potential antimicrobial agents targeting a novel binding region. RSC Medicinal Chemistry, 13 (7). pp. 831-839. ISSN 2632-8682
Abstract
By 2050, it is predicted that antimicrobial resistance will be responsible for 10 million global deaths annually, more deaths than cancer, costing the world economy $100 trillion. Clearly, strategies to address this problem are essential as bacterial evolution is rendering our current antibiotics ineffective. The discovery of an allosteric binding site on the established antibacterial target DNA gyrase offers a new medicinal chemistry strategy. As this site is distinct from the fluoroquinolone binding site, resistance is not yet documented. Using in silico molecular design methods, we have designed and synthesised a novel series of biphenyl-based inhibitors inspired by a published thiophene-based allosteric inhibitor. This series was evaluated in vitro against Escherichia coli DNA gyrase and E. coli topoisomerase IV with the most potent compounds exhibiting IC50 values towards the low micromolar range for DNA gyrase and only ∼2-fold less active against topoisomerase IV. The structure–activity relationships reported herein suggest insights to further exploit this allosteric site, offering a pathway to overcome developing fluoroquinolone resistance.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Royal Society of Chemistry 2022. This is an open access article under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemistry (Leeds) |
Funding Information: | Funder Grant number BBSRC (Biotechnology & Biological Sciences Research Council) BB/V007041/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 28 Jun 2022 15:07 |
Last Modified: | 25 Jun 2023 23:01 |
Status: | Published |
Publisher: | Royal Society of Chemistry (RSC) |
Identification Number: | 10.1039/d2md00049k |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:188157 |