Nguyen, N.T., Jennings, J., Milani, A.H. et al. (8 more authors) (2022) Highly stretchable conductive covalent coacervate gels for electronic skin. Biomacromolecules, 23 (3). pp. 1423-1432. ISSN 1525-7797
Abstract
Highly stretchable electrically conductive hydrogels have been extensively researched in recent years, especially for applications in strain and pressure sensing, electronic skin, and implantable bioelectronic devices. Herein, we present a new cross-linked complex coacervate approach to prepare conductive hydrogels that are both highly stretchable and compressive. The gels involve a complex coacervate between carboxylated nanogels and branched poly(ethylene imine), whereby the latter is covalently cross-linked by poly(ethylene glycol) diglycidyl ether (PEGDGE). Inclusion of graphene nanoplatelets (Gnp) provides electrical conductivity as well as tensile and compressive strain-sensing capability to the hydrogels. We demonstrate that judicious selection of the molecular weight of the PEGDGE cross-linker enables the mechanical properties of these hydrogels to be tuned. Indeed, the gels prepared with a PEGDGE molecular weight of 6000 g/mol defy the general rule that toughness decreases as strength increases. The conductive hydrogels achieve a compressive strength of 25 MPa and a stretchability of up to 1500%. These new gels are both adhesive and conformal. They provide a self-healable electronic circuit, respond rapidly to human motion, and can act as strain-dependent sensors while exhibiting low cytotoxicity. Our new approach to conductive gel preparation is efficient, involves only preformed components, and is scalable.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 American Chemical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0). |
Keywords: | Adhesives; Electric Conductivity; Graphite; Humans; Hydrogels; Wearable Electronic Devices |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > Department of Chemistry (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 20 May 2022 09:49 |
Last Modified: | 24 May 2022 16:15 |
Status: | Published |
Publisher: | American Chemical Society (ACS) |
Refereed: | Yes |
Identification Number: | 10.1021/acs.biomac.1c01660 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:187099 |
Download
Filename: Highly Stretchable Conductive Covalent Coacervate Gels for Electronic Skin.pdf
Licence: CC-BY 4.0