Sæbø, J.S., Socolar, J.B., Sánchez, E.P. et al. (5 more authors) (2022) Ignoring variation in wood density drives substantial bias in biomass estimates across spatial scales. Environmental Research Letters, 17 (5). 054002.
Abstract
Rapid development of remote sensing and Light Detection and Ranging (LiDAR) technology has refined estimates of tree architecture and extrapolation of biomass across large spatial scales. Yet, current biomass maps show significant discrepancies and mismatch to independent ground data. A potential obstacle to accurate biomass estimation is the loss of information on wood density, which can vary at local and regional scales, in the extrapolation process. Here we investigate if variation in wood specific gravity (WSG) substantially impacts the distribution of above-ground biomass (AGB) across a range of scales from local plots to large regions. We collected wood cores and measured tree volume in 341 forest sites across large altitudinal and climatic gradients in Colombia. At all spatial scales, variation in WSG was substantial compared to variation in volume. Imputing study-wide average values of WSG induced regional biases in AGB estimates of almost 30%, consequently undervaluing the difference between forest areas of low and high average wood density. Further, neither stem size nor climate usefully predicted WSG when accounting for spatial dependencies among our sampling plots. These results suggest that remote sensing- and LiDAR-based projections to biomass estimates can be considerably improved by explicitly accounting for spatial variation in WSG, necessitating further research on the spatial distribution of WSG and potential environmental predictors to advance efficient and accurate large-scale mapping of biomass.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 The Author(s). Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
Keywords: | biomass; carbon; wood specific gravity; wood density; tropical forest; Colombia; LiDAR |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Biosciences (Sheffield) > Department of Animal and Plant Sciences (Sheffield) |
Funding Information: | Funder Grant number Natural Environment Research Council NE/R017441/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 19 May 2022 12:40 |
Last Modified: | 19 May 2022 12:40 |
Status: | Published |
Publisher: | IOP Publishing |
Refereed: | Yes |
Identification Number: | 10.1088/1748-9326/ac62ae |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:187074 |