Tian, Y., Feng, P., Zhu, C. et al. (5 more authors) (2022) Nearly lattice-matched GaN distributed Bragg reflectors with enhanced performance. Materials, 15 (10). 3536.
Abstract
Heavy silicon-doping in GaN generally causes a rough surface and saturated conductivity, while heavily silicon-doped n++-AlGaN with ≤5% aluminum can maintain an atomically flat surface and exhibit enhanced conductivity. Given this major advantage, we propose using multiple pairs of heavily silicon-doped n++-Al0.01Ga0.99N and undoped GaN instead of widely used multiple pairs of heavily silicon-doped n++-GaN and undoped GaN for the fabrication of a lattice-matched distributed Bragg reflector (DBR) by using an electrochemical (EC) etching technique, where the lattice mismatch between Al0.01Ga0.99N and GaN can be safely ignored. By means of using the EC etching technique, the n++-layers can be converted into nanoporous (NP) layers whilst the undoped GaN remains intact, leading to a significantly high contrast in refractive index between NP-layer and undoped GaN and thus forming a DBR. Our work demonstrates that the NP-Al0.01Ga0.99N/undoped GaN-based DBR exhibits a much smoother surface, enhanced reflectivity and a wider stopband than the NP-GaN/undoped GaN-based DBR. Furthermore, the NP-Al0.01Ga0.99N/undoped GaN-based DBR sample with a large size (up to 1 mm in width) can be obtained, while a standard NP-GaN/undoped GaN-based DBR sample obtained is typically on a scale of a few 100 μm in width. Finally, a series of DBR structures with high performance, ranging from blue to dark yellow, was demonstrated by using multiple pairs of n++-Al0.01Ga0.99N and undoped GaN.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 The Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | AlGaN/GaN; distributed Bragg reflector; electrochemical etching; nanoporous structure |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Electronic and Electrical Engineering (Sheffield) |
Funding Information: | Funder Grant number Engineering and Physical Sciences Research Council EP/P006973/1; EP/T013001/1; EP/M015181/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 17 May 2022 13:24 |
Last Modified: | 18 May 2022 09:39 |
Status: | Published |
Publisher: | MDPI AG |
Refereed: | Yes |
Identification Number: | 10.3390/ma15103536 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:186928 |