Hanlon, HM, Bernie, D, Carigi, G et al. (1 more author) (2021) Future changes to high impact weather in the UK. Climatic Change, 166 (3-4). 50. ISSN 0165-0009
Abstract
High impact weather events such as extreme temperatures or rainfall can cause significant disruption across the UK affecting sectors such as health, transport, agriculture and energy. In this study we draw on the latest set of UK climate projections, UKCP, to examine metrics relating to high-impact weather over the UK and how these change with different levels of future global warming from 1.5 °C to 4 °C above pre-industrial. The changes to these hazards show increases in the frequency of extremely hot days and nights, with a UK average increase in hot days of between 5 and 39 days per year between 1.5 °C and 4 °C of global warming. Projections indicate an increase in cooling degree days of 134–627% and an increase in growing degree days of 19–60% between 1.5 °C and 4 °C of global warming. Extremely hot nights, which are currently rare, are emerging as more common occurrences. The frequency of high daily temperatures and rainfall increase systematically, while the frequency of very cold conditions (based on days where temperatures fall below 0 °C) is shown to decrease by 10 to 49 days per year. A reduction in heating degree days, of 11–32% between 1.5 °C and 4 °C of warming, is projected. Levels of daily rainfall, which currently relate to increased risk of river flooding, are shown to increase across the country, with increases of days with high impact levels of rainfall occurring by 1 to 8 days per year between 1.5 °C and 4 °C of warming. Average drought severity is projected to increase for 3-, 6-, 12- and 36-month-long droughts. The largest changes in the severity of the 12-month drought are between −3 and +19% between 1.5 °C and 4 °C of warming and for 36-month drought between −2 and +54% between 1.5 °C and 4 °C of warming. The projected future changes in high impact weather from this study will enable the characterization of climate risks and ultimately be able to better inform adaptation planning in different sectors to support the increase in resilience of the UK to future climate variability and change.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © Crown 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Climate impacts; Adaptation; Resilience; Climate change; Global warming; Extremes |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst for Climate & Atmos Science (ICAS) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 22 Apr 2022 11:41 |
Last Modified: | 22 Apr 2022 11:41 |
Status: | Published |
Publisher: | Springer |
Identification Number: | 10.1007/s10584-021-03100-5 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:185988 |
Download
Filename: Hanlon2021_Article_FutureChangesToHighImpactWeath.pdf
Licence: CC-BY 4.0