Eadie, E, Hiwar, W, Fletcher, L et al. (8 more authors) (2022) Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber. Scientific Reports, 12 (1). 4373. ISSN 2045-2322
Abstract
Many infectious diseases, including COVID-19, are transmitted by airborne pathogens. There is a need for effective environmental control measures which, ideally, are not reliant on human behaviour. One potential solution is Krypton Chloride (KrCl) excimer lamps (often referred to as Far-UVC), which can efficiently inactivate pathogens, such as coronaviruses and influenza, in air. Research demonstrates that when KrCl lamps are filtered to remove longer-wavelength ultraviolet emissions they do not induce acute reactions in the skin or eyes, nor delayed effects such as skin cancer. While there is laboratory evidence for Far-UVC efficacy, there is limited evidence in full-sized rooms. For the first time, we show that Far-UVC deployed in a room-sized chamber effectively inactivates aerosolised Staphylococcus aureus. At a room ventilation rate of 3 air-changes-per-hour (ACH), with 5 filtered-sources the steady-state pathogen load was reduced by 98.4% providing an additional 184 equivalent air changes (eACH). This reduction was achieved using Far-UVC irradiances consistent with current American Conference of Governmental Industrial Hygienists threshold limit values for skin for a continuous 8-h exposure. Our data indicate that Far-UVC is likely to be more effective against common airborne viruses, including SARS-CoV-2, than bacteria and should thus be an effective and “hands-off” technology to reduce airborne disease transmission. The findings provide room-scale data to support the design and development of effective Far-UVC systems.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2022. This is an open access article under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Civil Engineering (Leeds) |
Funding Information: | Funder Grant number Department of Health Accounts Payable - SULEEDSUNI Not Known |
Depositing User: | Symplectic Publications |
Date Deposited: | 12 Apr 2022 11:21 |
Last Modified: | 12 Apr 2022 11:21 |
Status: | Published |
Publisher: | Nature Research |
Identification Number: | 10.1038/s41598-022-08462-z |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:185628 |