Vigor, J.E., Bernal, S.A., Xiao, X. et al. (1 more author) (2022) Time-resolved 3D characterisation of early-age microstructural development of Portland cement. Journal of Materials Science, 57 (8). pp. 4952-4969. ISSN 0022-2461
Abstract
Time-resolved in-situ synchrotron X-ray microtomography reveals new levels of detail about the chemical and physical processes that take place as Portland cement hardens. The conversion of a fluid paste into a hardened product can be monitored on a sub-minute time-scale, and with sample movement/settlement corrections applied to enable individual particles to be tracked as they react, hydrate, and become interconnected into a single strong monolith. The growth of the strength-giving hydrate phases surrounding cement grains, and of the fluid-filled pore network that surrounds them, is able to be directly viewed at the level of individual cement particles through the application of this tracking protocol. When cement is brought into contact with water, a layer which differs in density from the bulk of the cement grains becomes observable on the grain surfaces during the induction period (during which time the heat evolution from the paste is relatively low). As hydration continues, reaction products grow both from particle surfaces into the initially fluid-filled region, and also into the space originally occupied by the cement particles, forming a density gradient within the microstructure. As the reaction accelerates and larger volumes of solid phases precipitate, the newly-formed solid structure percolates via interconnection of agglomerated low-density outer hydrates, which then densify as hydration continues. This eventually leads to solidification of the structure into a hardened porous matrix.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 03 Mar 2022 15:15 |
Last Modified: | 03 Mar 2022 15:15 |
Status: | Published |
Publisher: | Springer Nature |
Refereed: | Yes |
Identification Number: | 10.1007/s10853-022-06952-z |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:184351 |
Download
Filename: Vigor2022_Article_Time-resolved3DCharacterisatio.pdf
Licence: CC-BY 4.0