Murphy, P., Glynn, D., Dias, S. et al. (11 more authors) (2022) Modelling approaches for histology-independent cancer drugs to inform NICE appraisals : a systematic review and decision-framework. Health Technology Assessment, 25 (76). pp. 1-228. ISSN 1366-5278
Abstract
Background
The first histology-independent marketing authorisation in Europe was granted in 2019. This was the first time that a cancer treatment was approved based on a common biomarker rather than the location in the body at which the tumour originated. This research aims to explore the implications for National Institute for Health and Care Excellence appraisals.
Methods
Targeted reviews were undertaken to determine the type of evidence that is likely to be available at the point of marketing authorisation and the analyses required to support National Institute for Health and Care Excellence appraisals. Several challenges were identified concerning the design and conduct of trials for histology-independent products, the greater levels of heterogeneity within the licensed population and the use of surrogate end points. We identified approaches to address these challenges by reviewing key statistical literature that focuses on the design and analysis of histology-independent trials and by undertaking a systematic review to evaluate the use of response end points as surrogate outcomes for survival end points. We developed a decision framework to help to inform approval and research policies for histology-independent products. The framework explored the uncertainties and risks associated with different approval policies, including the role of further data collection, pricing schemes and stratified decision-making.
Results
We found that the potential for heterogeneity in treatment effects, across tumour types or other characteristics, is likely to be a central issue for National Institute for Health and Care Excellence appraisals. Bayesian hierarchical methods may serve as a useful vehicle to assess the level of heterogeneity across tumours and to estimate the pooled treatment effects for each tumour, which can inform whether or not the assumption of homogeneity is reasonable. Our review suggests that response end points may not be reliable surrogates for survival end points. However, a surrogate-based modelling approach, which captures all relevant uncertainty, may be preferable to the use of immature survival data. Several additional sources of heterogeneity were identified as presenting potential challenges to National Institute for Health and Care Excellence appraisal, including the cost of testing, baseline risk, quality of life and routine management costs. We concluded that a range of alternative approaches will be required to address different sources of heterogeneity to support National Institute for Health and Care Excellence appraisals. An exemplar case study was developed to illustrate the nature of the assessments that may be required.
Conclusions
Adequately designed and analysed basket studies that assess the homogeneity of outcomes and allow borrowing of information across baskets, where appropriate, are recommended. Where there is evidence of heterogeneity in treatment effects and estimates of cost-effectiveness, consideration should be given to optimised recommendations. Routine presentation of the scale of the consequences of heterogeneity and decision uncertainty may provide an important additional approach to the assessments specified in the current National Institute for Health and Care Excellence methods guide.
Further research
Further exploration of Bayesian hierarchical methods could help to inform decision-makers on whether or not there is sufficient evidence of homogeneity to support pooled analyses. Further research is also required to determine the appropriate basis for apportioning genomic testing costs where there are multiple targets and to address the challenges of uncontrolled Phase II studies, including the role and use of surrogate end points.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021 The Authors. This work was produced by Murphy et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is an Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction and adaption in any medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original author(s), the publication source – NIHR Journals Library, and the DOI of the publication must be cited. |
Keywords: | bayes theorem; biomarkers; cost–benefit analysis; data collection; genetic testing; neoplasms; policy; uncertainty |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Health and Related Research (Sheffield) > ScHARR - Sheffield Centre for Health and Related Research |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 17 Jan 2022 13:37 |
Last Modified: | 18 Jan 2022 09:36 |
Status: | Published |
Publisher: | NIHR Journals Library |
Refereed: | Yes |
Identification Number: | 10.3310/hta25760 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:182625 |