Perez-Nievas, B.G., Johnson, L., Beltran-Lobo, P. et al. (10 more authors) (2021) Astrocytic C–X–C motif chemokine ligand-1 mediates β-amyloid-induced synaptotoxicity. Journal of Neuroinflammation, 18 (1). 306.
Abstract
Background
Pathological interactions between β-amyloid (Aβ) and tau drive synapse loss and cognitive decline in Alzheimer’s disease (AD). Reactive astrocytes, displaying altered functions, are also a prominent feature of AD brain. This large and heterogeneous population of cells are increasingly recognised as contributing to early phases of disease. However, the contribution of astrocytes to Aβ-induced synaptotoxicity in AD is not well understood.
Methods
We stimulated mouse and human astrocytes with conditioned medium containing concentrations and species of human Aβ that mimic those in human AD brain. Medium from stimulated astrocytes was collected and immunodepleted of Aβ before being added to naïve rodent or human neuron cultures. A cytokine, identified in unbiased screens of stimulated astrocyte media and in postmortem human AD brain lysates was also applied to neurons, including those pre-treated with a chemokine receptor antagonist. Tau mislocalisation, synaptic markers and dendritic spine numbers were measured in cultured neurons and organotypic brain slice cultures.
Results
We found that conditioned medium from stimulated astrocytes induces exaggerated synaptotoxicity that is recapitulated following spiking of neuron culture medium with recombinant C–X–C motif chemokine ligand-1 (CXCL1), a chemokine upregulated in AD brain. Antagonism of neuronal C–X–C motif chemokine receptor 2 (CXCR2) prevented synaptotoxicity in response to CXCL1 and Aβ-stimulated astrocyte secretions.
Conclusions
Our data indicate that astrocytes exacerbate the synaptotoxic effects of Aβ via interactions of astrocytic CXCL1 and neuronal CXCR2 receptors, highlighting this chemokine–receptor pair as a novel target for therapeutic intervention in AD.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: | This paper has 13 authors. You can scroll the list below to see them all or them all.
|
Copyright, Publisher and Additional Information: | © 2021 The Author(s) This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
Keywords: | Astrocyte; Synapse; Beta-amyloid; Alzheimer's disease; CXCL1; Tau |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Sheffield Teaching Hospitals |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 13 Jan 2022 10:21 |
Last Modified: | 13 Jan 2022 10:21 |
Status: | Published |
Publisher: | BioMed Central |
Refereed: | Yes |
Identification Number: | 10.1186/s12974-021-02371-0 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:182392 |
Download
Filename: s12974-021-02371-0.pdf
Licence: CC-BY 4.0