Gaspar, H., Parnell, A.J. orcid.org/0000-0001-8606-8644, Pérez, G.E. et al. (5 more authors) (2021) Graded morphologies and the performance of PffBT4T-2OD:PC71BM devices using additive choice. Nanomaterials, 11 (12). 3367. ISSN 2079-4991
Abstract
The impact of several solvent processing additives (1-chloronaphthalene, methylnaphthalene, hexadecane, 1-phenyloctane, and p-anisaldehyde), 3% v/v in o-dichlorobenzene, on the performance and morphology of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2′,5′,22033,5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM)-based polymer solar cells was investigated. Some additives were shown to enhance the power conversion efficiency (PCE) by ~6%, while others decreased the PCE by ~17–25% and a subset of the additives tested completely eliminated any power conversion efficiency and the operation as a photovoltaic device. Grazing-Incidence Wide Angle X-ray Scattering (GIWAXS) revealed a clear stepwise variation in the crystallinity of the systems when changing the additive between the two extreme situations of maximum PCE (1-chloronaphthalene) and null PCE (hexadecane). Small-Angle Neutron Scattering (SANS) revealed that the morphology of devices with PCE ~0% was composed of large domains with correlation lengths of ~30 nm, i.e., much larger than the typical exciton diffusion length (~12 nm) in organic semiconductors. The graded variations in crystallinity and in nano-domain size observed between the two extreme situations (1-chloronaphthalene and hexadecane) were responsible for the observed graded variations in device performance.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | Organic photovoltaics; bulk-heterojunction morphology; additives; PffBT4T-2OD |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > Department of Physics and Astronomy (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 20 Dec 2021 16:43 |
Last Modified: | 20 Dec 2021 16:43 |
Status: | Published |
Publisher: | MDPI AG |
Refereed: | Yes |
Identification Number: | 10.3390/nano11123367 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:181796 |