Dhimish, Mahmoud and Lazaridis, Pavlos I. (2021) An empirical investigation on the correlation between solar cell cracks and hotspots. Scientific Reports. ISSN 2045-2322
Abstract
In recent years, solar cell cracks have been a topic of interest to industry because of their impact on performance deterioration. Therefore, in this work, we investigate the correlation of four crack modes and their effects on the temperature of the solar cell, well known as hotspot. We divided the crack modes to crack free (mode 1), micro-crack (mode 2), shaded area (mode 3), and breakdown (mode 4). Using a dataset of 12 different solar cell samples, we have found that there are no hotspots detected for a solar cell affected by modes 1 or 2. However, we discovered that the solar cell is likely to have hotspots if affected by crack mode 3 or 4, with an expected increase in the temperature from 25∘C to 100∘C. Additionally, we have noticed that an increase in the shading ratio in solar cells can cause severe hotspots. For this reason, we observed that the worst-case scenario for a hotspot to develop is at shading ratios of 40% to 60%, with an identified increase in the cell temperature from 25∘C to 105∘C.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021, The Author(s). |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Electronic Engineering (York) |
Depositing User: | Pure (York) |
Date Deposited: | 16 Dec 2021 01:16 |
Last Modified: | 21 Dec 2024 00:22 |
Published Version: | https://doi.org/10.1038/s41598-021-03498-z |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-021-03498-z |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:181665 |