Schwarz, KR, Calahan, JK, Zhang, K et al. (25 more authors) (2021) Molecules with ALMA at Planet-forming Scales. XX. The Massive Disk around GM Aurigae. The Astrophysical Journal Supplement Series, 257 (1). 20. ISSN 0067-0049
Abstract
Gas mass remains one of the most difficult protoplanetary disk properties to constrain. With much of the protoplanetary disk too cold for the main gas constituent, H2, to emit, alternative tracers such as dust, CO, or the H2 isotopologue HD are used. However, relying on disk mass measurements from any single tracer requires assumptions about the tracer's abundance relative to H2 and the disk temperature structure. Using new Atacama Large Millimeter/submillimeter Array (ALMA) observations from the Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program as well as archival ALMA observations, we construct a disk physical/chemical model of the protoplanetary disk GM Aur. Our model is in good agreement with the spatially resolved CO isotopologue emission from 11 rotational transitions with spatial resolution ranging from 0farcs15 to 0farcs46 (24–73 au at 159 pc) and the spatially unresolved HD J = 1–0 detection from Herschel. Our best-fit model favors a cold protoplanetary disk with a total gas mass of approximately 0.2 M⊙, a factor of 10 reduction in CO gas inside roughly 100 au and a factor of 100 reduction outside of 100 au. Despite its large mass, the disk appears to be on the whole gravitationally stable based on the derived Toomre Q parameter. However, the region between 70 and 100 au, corresponding to one of the millimeter dust rings, is close to being unstable based on the calculated Toomre Q of <1.7. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021. The American Astronomical Society. All rights reserved. This is an author-created, un-copyedited version of an article published in Astrophysical Journal Supplement. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.3847/1538-4365/ac143b |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Astrophysics (Leeds) |
Funding Information: | Funder Grant number STFC (Science and Technology Facilities Council) ST/R000549/1 STFC (Science and Technology Facilities Council) ST/T000287/1 MRC (Medical Research Council) MR/T040726/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 12 Nov 2021 10:03 |
Last Modified: | 01 Nov 2022 01:14 |
Status: | Published |
Publisher: | IOP Publishing |
Identification Number: | 10.3847/1538-4365/ac143b |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:180187 |