Alarcón, F, Bosman, AD, Bergin, EA et al. (22 more authors) (2021) Molecules with ALMA at Planet-forming Scales (MAPS). VIII. CO Gap in AS 209—Gas Depletion or Chemical Processing? The Astrophysical Journal Supplement Series, 257 (1). 8. ISSN 0067-0049
Abstract
Emission substructures in gas and dust are common in protoplanetary disks. Such substructures can be linked to planet formation or planets themselves. We explore the observed gas substructures in AS 209 using thermochemical modeling with RAC2D and high-spatial-resolution data from the Molecules with ALMA at Planet-forming Scales (MAPS) program. The observations of C18O J = 2–1 emission exhibit a strong depression at 88 au overlapping with the positions of multiple gaps in millimeter dust continuum emission. We find that the observed CO column density is consistent with either gas surface-density perturbations or chemical processing, while C2H column density traces changes in the C/O ratio rather than the H2 gas surface density. However, the presence of a massive planet (>0.2 MJup) would be required to account for this level of gas depression, which conflicts with constraints set by the dust emission and the pressure profile measured by gas kinematics. Based on our models, we infer that a local decrease of CO abundance is required to explain the observed structure in CO, dominating over a possible gap-carving planet present and its effect on the H2 surface density. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021. The American Astronomical Society. All rights reserved. This is an author-created, un-copyedited version of an article published in Astrophysical Journal Supplement. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.3847/1538-4365/ac22ae |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Astrophysics (Leeds) |
Funding Information: | Funder Grant number STFC (Science and Technology Facilities Council) ST/R000549/1 STFC (Science and Technology Facilities Council) ST/T000287/1 MRC (Medical Research Council) MR/T040726/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 12 Nov 2021 11:14 |
Last Modified: | 01 Nov 2022 01:15 |
Status: | Published |
Publisher: | IOP Publishing |
Identification Number: | 10.3847/1538-4365/ac22ae |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:180180 |