Booth, AS, Tabone, B, Ilee, JD orcid.org/0000-0003-1008-1142 et al. (27 more authors) (2021) Molecules with ALMA at Planet-forming Scales (MAPS). XVI. Characterizing the Impact of the Molecular Wind on the Evolution of the HD 163296 System. The Astrophysical Journal Supplement Series, 257 (1). 16. ISSN 0067-0049
Abstract
During the main phase of evolution of a protoplanetary disk, accretion regulates the inner-disk properties, such as the temperature and mass distribution, and in turn, the physical conditions associated with planet formation. The driving mechanism behind accretion remains uncertain; however, one promising mechanism is the removal of a fraction of angular momentum via a magnetohydrodynamic (MHD) disk wind launched from the inner tens of astronomical units of the disk. This paper utilizes CO isotopologue emission to study the unique molecular outflow originating from the HD 163296 protoplanetary disk obtained with the Atacama Large Millimeter/submillimeter Array. HD 163296 is one of the most well-studied Class II disks and is proposed to host multiple gas-giant planets. We robustly detect the large-scale rotating outflow in the 12CO J = 2 − 1 and the 13CO J = 2 − 1 and J = 1 − 0 transitions. We constrain the kinematics, the excitation temperature of the molecular gas, and the mass-loss rate. The high ratio of the rates of ejection to accretion (5–50), together with the rotation signatures of the flow, provides solid evidence for an MHD disk wind. We find that the angular momentum removal by the wind is sufficient to drive accretion though the inner region of the disk; therefore, accretion driven by turbulent viscosity is not required to explain HD 163296's accretion. The low temperature of the molecular wind and its overall kinematics suggest that the MHD disk wind could be perturbed and shocked by the previously observed high-velocity atomic jet. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021. The American Astronomical Society. All rights reserved. This is an author-created, un-copyedited version of an article published in Astrophysical Journal Supplement. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.3847/1538-4365/ac1ad4 |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Astrophysics (Leeds) |
Funding Information: | Funder Grant number STFC (Science and Technology Facilities Council) ST/R000549/1 STFC (Science and Technology Facilities Council) ST/T000287/1 MRC (Medical Research Council) MR/T040726/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 11 Nov 2021 13:29 |
Last Modified: | 01 Nov 2022 01:13 |
Status: | Published |
Publisher: | Institute of Physics Publishing |
Identification Number: | 10.3847/1538-4365/ac1ad4 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:180167 |