Johansson, E, Caraballo, R, Mistry, N et al. (10 more authors) (2020) Pentavalent Sialic Acid Conjugates Block Coxsackievirus A24 Variant and Human Adenovirus Type 37–Viruses That Cause Highly Contagious Eye Infections. ACS Chemical Biology, 15 (10). pp. 2683-2691. ISSN 1554-8929
Abstract
Coxsackievirus A24 variant (CVA24v) and human adenovirus 37 (HAdV-37) are leading causative agents of the severe and highly contagious ocular infections acute hemorrhagic conjunctivitis and epidemic keratoconjunctivitis, respectively. Currently, neither vaccines nor antiviral agents are available for treating these diseases, which affect millions of individuals worldwide. CVA24v and HAdV-37 utilize sialic acid as attachment receptors facilitating entry into host cells. Previously, we and others have shown that derivatives based on sialic acid are effective in preventing HAdV-37 binding and infection of cells. Here, we designed and synthesized novel pentavalent sialic acid conjugates and studied their inhibitory effect against CVA24v and HAdV-37 binding and infection of human corneal epithelial cells. The pentavalent conjugates are the first reported inhibitors of CVA24v infection and proved efficient in blocking HAdV-37 binding. Taken together, the pentavalent conjugates presented here form a basis for the development of general inhibitors of these highly contagious ocular pathogens.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 American Chemical Society. This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) > School of Molecular and Cellular Biology (Leeds) > Cryo EM, Image Processing (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 25 Jun 2021 14:38 |
Last Modified: | 25 Jun 2021 14:38 |
Status: | Published |
Publisher: | American Chemical Society (ACS) |
Identification Number: | 10.1021/acschembio.0c00446 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:175580 |