Duval, C orcid.org/0000-0002-4870-6542, Baranauskas, A, Feller, T et al. (14 more authors) (2021) Elimination of fibrin γ-chain cross-linking by FXIIIa increases pulmonary embolism arising from murine inferior vena cava thrombi. Proceedings of the National Academy of Sciences, 118 (27). e2103226118. ISSN 0027-8424
Abstract
The onset of venous thromboembolism, including pulmonary embolism, represents a significant health burden affecting more than 1 million people annually worldwide. Current treatment options are based on anticoagulation, which is suboptimal for preventing further embolic events. In order to develop better treatments for thromboembolism, we sought to understand the structural and mechanical properties of blood clots and how this influences embolism in vivo. We developed a murine model in which fibrin γ-chain cross-linking by activated Factor XIII is eliminated (FGG3X) and applied methods to study thromboembolism at whole-body and organ levels. We show that FGG3X mice have a normal phenotype, with overall coagulation parameters and platelet aggregation and function largely unaffected, except for total inhibition of fibrin γ-chain cross-linking. Elimination of fibrin γ-chain cross-linking resulted in thrombi with reduced strength that were prone to fragmentation. Analysis of embolism in vivo using Xtreme optical imaging and light sheet microscopy demonstrated that the elimination of fibrin γ-chain cross-linking resulted in increased embolization without affecting clot size or lysis. Our findings point to a central previously unrecognized role for fibrin γ-chain cross-linking in clot stability. They also indirectly indicate mechanistic targets for the prevention of thrombosis through selective modulation of fibrin α-chain but not γ-chain cross-linking by activated Factor XIII to reduce thrombus size and burden, while maintaining clot stability and preventing embolism.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
Keywords: | fibrin; Factor XIII; thromboembolism; mechanical properties; clot structure |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Molecular & Nanoscale Physics The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds) > Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM) > Clinical & Population Science Dept (Leeds) The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds) > Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM) > Discovery & Translational Science Dept (Leeds) |
Funding Information: | Funder Grant number British Heart Foundation RG/13/3/30104 British Heart Foundation RG/18/11/34036 |
Depositing User: | Symplectic Publications |
Date Deposited: | 23 Jun 2021 15:27 |
Last Modified: | 01 Mar 2023 15:05 |
Status: | Published |
Publisher: | National Academy of Sciences |
Identification Number: | 10.1073/pnas.2103226118 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:175488 |