Tyler, J.J., Smaczynska-de Rooij, I.I., Abugharsa, L. et al. (4 more authors) (2021) Phosphorylation of the WH2 domain in yeast Las17/WASP regulates G-actin binding and protein function during endocytosis. Scientific Reports, 11. 9718. ISSN 2045-2322
Abstract
Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. WH2 domains are short sequence motifs found in many different actin binding proteins including WASP family proteins which regulate the actin nucleating complex Arp2/3. In this study we reveal a phosphorylation site, Serine 554, within the WH2 domain of the yeast WASP homologue Las17. Both phosphorylation and a phospho-mimetic mutation reduce actin monomer binding affinity while an alanine mutation, generated to mimic the non-phosphorylated state, increases actin binding affinity. The effect of these mutations on the Las17-dependent process of endocytosis in vivo was analysed and leads us to propose that switching of Las17 phosphorylation states may allow progression through distinct phases of endocytosis from site assembly through to the final scission stage. While the study is focused on Las17, the sole WASP family protein in yeast, our results have broad implications for our understanding of how a key residue in this conserved motif can underpin the many different actin regulatory roles with which WH2 domains have been associated.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2021. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Biosciences (Sheffield) > Department of Biomedical Science (Sheffield) The University of Sheffield > Faculty of Science (Sheffield) > School of Biosciences (Sheffield) > Department of Molecular Biology and Biotechnology (Sheffield) |
Funding Information: | Funder Grant number BIOTECHNOLOGY AND BIOLOGICAL SCIENCES RESEARCH COUNCIL BB/L013851/1 BIOTECHNOLOGY AND BIOLOGICAL SCIENCES RESEARCH COUNCIL BB/N007581/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 27 May 2021 10:59 |
Last Modified: | 27 May 2021 11:26 |
Status: | Published |
Publisher: | Nature Research |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-021-88826-z |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:174576 |