Kim, Y, Eom, HH, Kim, YK et al. (2 more authors) (2020) Effective removal of cesium from wastewater via adsorptive filtration with potassium copper hexacyanoferrate-immobilized and polyethyleneimine-grafted graphene oxide. Chemosphere, 250. 126262. ISSN 0045-6535
Abstract
As an attractive alternative to radioactive cesium removal, we introduced an adsorptive filtration method using a composite membrane consisting of potassium copper hexacyanoferrate (KCuHCF) and graphene-based support. Polyethyleneimine-grafted reduced graphene oxide (PEI-rGO), used as an immobilizing matrix, was effective not only in distributing KCuHCF inside the composite with the aid of abundant amino-functionality, but also in achieving high water flux by increasing the interlayer spacing of the laminar membrane structure. Due to the rapid and selective cesium adsorption properties of KCuHCF, the fabricated membrane was found to be effective in achieving complete removal of cesium ions under a high flux (over 500 L m−2 h−1), which is difficult in a conventional membrane utilizing the molecular sieving effect. This approach offers strong potential in the field of elimination of radionuclides that require rapid and complete decontamination.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) |
Funding Information: | Funder Grant number EPSRC (Engineering and Physical Sciences Research Council) EP/S032797/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 12 May 2021 14:40 |
Last Modified: | 12 May 2021 14:40 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.chemosphere.2020.126262 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:173846 |