Greiciunas, E, Borman, D orcid.org/0000-0002-8421-2582, Summers, J et al. (1 more author) (2021) Experimental and numerical study of the additive layer manufactured inter-layer channel heat exchanger. Applied Thermal Engineering, 188. 116501. ISSN 1359-4311
Abstract
In this paper the performance of a recently patented additive layer manufactured (ALM) concept inter-layer heat exchanger (HE) is evaluated experimentally and numerically. Two numerical HE models are developed using the conjugate heat transfer (CHT) methodology. The first is an idealised HE core model, consisting of a single period width HE corrugation section (termed superchannel). The second approach uses a fully detailed HE unit model which resolves the flow and heat transfer inside the complete HE unit. A close agreement was found between the HE unit simulations and the experimentally obtained results, such that the fully detailed HE model could be validated. It was also shown that, a full CHT approach is necessary to accurately evaluate complex inter-layer ALM HE core flow and heat transfer behaviour and can serve as an approach for optimising HE designs. The results also reinforce the occurrence of the inter-layer flow mixing inside the HE core of the same flow streams and allows the mass flow to redistribute inside the HE core which is impossible with the current HE generation geometries. The superchannel model results in a slight over-estimation in heat transfer ( K on average) making the simplified model acceptable as a conservative estimate. Using validated simulations a parametric study was conducted by changing the solid properties of the full CHT HE model to aluminium to investigate the effects of a significantly more conductive material. This resulted in higher heat transfer effectiveness () of the HE unit. All the simulations were carried out using CFD package OpenFOAM.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021 The Author(s). Published by Elsevier Ltd. This is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Additive Layer Manufacturing (ALM); Heat exchangers; Forced convection; Computation Fluid Dynamics (CFD); Conjugate Heat Transfer (CHT); Numerical analysis; OpenFOAM |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Civil Engineering (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 06 May 2021 10:51 |
Last Modified: | 06 May 2021 13:29 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.applthermaleng.2020.116501 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:173467 |