Randall, C.A., Fan, Z., Reaney, I. orcid.org/0000-0003-3893-6544 et al. (2 more authors) (2021) Antiferroelectrics: History, fundamentals, crystal chemistry, crystal structures, size effects, and applications. Journal of the American Ceramic Society, 104 (8). pp. 3775-3810. ISSN 0002-7820
Abstract
Antiferroelectric (AFE) materials are of great interest owing to their scientific richness and their utility in high energy density capacitors. Here, the history of AFEs is reviewed, and the characteristics of antiferroelectricity and the phase transition of an AFE material are described. AFEs are energetically close to ferroelectric (FE) phases, and thus both the electric field strength and applied stress (pressure) influence the nature of the transition. With the comparable energetics between the AFE and FE phases, there can be a competition and frustration of these phases, and either incommensurate (INC) and/or a glassy (relaxor) structures may be observed. The phase transition in AFEs can also be influenced by the crystal/grain size, particularly at nanometric dimensions, and may be tuned through the formation of solid solutions. There have been extensive studies on the perovskite family of AFE materials, but many other crystal structures host AFE behavior, such as CuBiP2Se6. AFE applications include DC‐link capacitors for power electronics, defibrillator capacitors, pulse power devices, and electromechanical actuators. The paper concludes with a perspective on the future needs and opportunities with respect to discovery, science, and applications of AFE.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021 American Ceramic Society (ACERS). This is an author-produced version of a paper subsequently published in Journal of the American Ceramic Society. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 21 Apr 2021 08:49 |
Last Modified: | 01 Apr 2022 00:39 |
Status: | Published |
Publisher: | Wiley |
Refereed: | Yes |
Identification Number: | 10.1111/jace.17834 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:173277 |