Agrawal, A., Kruse, L.S., Vangsted, A.J. et al. (2 more authors) (2020) Human P2X7 receptor causes cycle arrest in RPMI-8226 myeloma cells to alter the interaction with osteoblasts and osteoclasts. Cells, 9 (11). 2341.
Abstract
Multiple myeloma is a malignant expansion of plasma cells and aggressively affects bone health. We show that P2X7 receptor altered myeloma growth, which affects primary bone cells in vitro. Expression on six human myeloma cell lines confirmed the heterogeneity associated with P2X7 receptor. Pharmacology with 2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate (BzATP) as agonist showed dose-dependent membranal pores on RPMI-8226 (p = 0.0027) and blockade with P2X7 receptor antagonists. Ca2+ influx with increasing doses of BzATP (p = 0.0040) was also inhibited with antagonists. Chronic P2X7 receptor activation reduced RPMI-8226 viability (p = 0.0208). No apoptosis or RPMI-8226 death was observed by annexin V/propidium iodide (PI) labeling and caspase-3 cleavage, respectively. However, bromodeoxyuridine (BrdU) labelling showed an accumulation of RPMI-8226 in the S phase of cell cycle progression (61.5%, p = 0.0114) with significant decline in G0/G1 (5.2%, p = 0.0086) and G2/M (23.5%, p = 0.0015) phases. As myeloma pathology depends on a positive and proximal interaction with bone, we show that P2X7 receptor on RPMI-8226 inhibited the myeloma-induced suppression on mineralization (p = 0.0286) and reversed the excessive osteoclastic resorption. Our results demonstrate a view of how myeloma cell growth is halted by P2X7 receptor and the consequences on myeloma–osteoblast and myeloma–osteoclast interaction in vitro.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 The Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Keywords: | P2X7 receptor; myeloma; osteoblasts; osteoclasts |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 16 Apr 2021 08:13 |
Last Modified: | 18 Apr 2021 22:36 |
Status: | Published |
Publisher: | MDPI AG |
Refereed: | Yes |
Identification Number: | 10.3390/cells9112341 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:173150 |