El-Dessouky, H.M. orcid.org/0000-0003-0715-5075, Saleh, M.N., Wang, Y. et al. (1 more author) (2021) Effect of unit-cell size on the barely visible impact damage in woven composites. Applied Sciences, 11 (5). 2364.
Abstract
The effect of the weaving architecture and the z-binding yarns, for 2D and 3D woven composites on the low-velocity impact resistance of carbon fibre reinforced composites, is investigated and benchmarked against noncrimp fabric (NCF). Four architectures, namely: NCF, 2D plain weave (2D-PW), 3D orthogonal: plain (ORT-PW) and twill (ORT-TW), were subjected to 15 J impact using a 16 mm-diameter, 6.7 kg hemispherical impactor. Nondestructive techniques, including ultrasonic C-scanning, Digital Image Correlation (DIC) and X-ray computed tomography (CT) were used to map and quantify the size of the induced barely visible impact damage (BVID). The energy absorption of each architecture was correlated to the damage size: both in-plane and in-depth directions. The 3D architectures, regardless of their unit-cell size, demonstrated the highest impact resistance as opposed to 2D-PW and the NCF. X-ray CT segmentation showed the effect of the higher frequency of the z-binding yarns, in the ORT-PW case, in delamination and crack arresting even when compared to the other 3D architecture (ORT-TW). Among all the architectures, ORT-PW exhibited the highest damage resistance with the least damage size. This suggests that accurate design of the z-binding yarns’ path and more importantly its frequency in 3D woven architectures is essential for impact-resistant composite structures.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2021 The Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | carbon fibre; 3-dimensional reinforcement; impact behaviour; nondestructive testing; X-ray computed tomography |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Advanced Manufacturing Institute (Sheffield) > AMRC Composites Centre (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 18 Mar 2021 14:24 |
Last Modified: | 18 Mar 2021 14:24 |
Status: | Published |
Publisher: | MDPI AG |
Refereed: | Yes |
Identification Number: | 10.3390/app11052364 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:172161 |