Meo, A., Pantasri, W., Daeng-Am, W. et al. (5 more authors) (2020) Magnetization dynamics of granular heat-assisted magnetic recording media by means of a multiscale model. Physical Review B. 174419. ISSN 2469-9969
Abstract
Heat-assisted magnetic recording (HAMR) technology represents the most promising candidate to replace the current perpendicular recording paradigm to achieve higher storage densities. To better understand HAMR dynamics in granular media we need to describe accurately the magnetization dynamics up to temperatures close to the Curie point. To this end we propose a multiscale approach based on the Landau-Lifshitz-Bloch (LLB) equation of motion parametrized using atomistic calculations. The LLB formalism describes the magnetization dynamics at finite temperature and allows us to efficiently simulate large system sizes and long time scales. Atomistic simulations provide the required temperature dependent input quantities for the LLB equation, such as the equilibrium magnetization and the anisotropy and can be used to capture the detailed magnetization dynamics. The multiscale approach makes it possible to overcome the computational limitations of atomistic models in dealing with large systems, such as a recording track, while incorporating the basic physics of the HAMR process. We investigate the magnetization dynamics of a single FePt grain as a function of the properties of the temperature profile and applied field and test the LLB results against atomistic calculations. Our results prove the appropriateness and potential of the approach proposed here where the granular model is able to reproduce the atomistic simulations and capture the main properties of a HAMR medium.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | ©2020 American Physical Society. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details. |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Physics (York) The University of York > York Institute for Materials Research |
Depositing User: | Pure (York) |
Date Deposited: | 11 Jan 2021 16:10 |
Last Modified: | 01 Dec 2024 01:17 |
Published Version: | https://doi.org/10.1103/PhysRevB.102.174419 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1103/PhysRevB.102.174419 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:169933 |
Download
Description: Meo et al._2020_Magnetization dynamics of granular heat-assisted magnetic recording media by means of a multiscale model