Diaz-Moreno, A., Roca, A., Lamur, A. et al. (5 more authors) (2020) Characterization of acoustic infrasound signals at Volcán de Fuego, Guatemala: a baseline for volcano monitoring. Frontiers in Earth Science, 8. 549774. ISSN 2296-6463
Abstract
Monitoring volcanic unrest and understanding seismic and acoustic signals associated with eruptive activity is key to mitigate its impacts on population and infrastructure. On June 3, 2018, Volcán de Fuego, Guatemala, produced a violent eruption with very little warning. The paroxysmal phase of this event generated pyroclastic density currents (PDC) that impacted nearby settlements resulting in 169 fatalities, 256 missing, and nearly 13,000 permanently displaced from their homes. Since then, Volcán de Fuego has been instrumented with an extensive network of seismic and infrasound sensors. Infrasound is a new monitoring tool in Guatemala. A key step toward its effective use in volcano monitoring at Volcán de Fuego is establishing a baseline for the interpretation of the recorded signals. Here, we present the first comprehensive characterization of acoustic signals at Volcán de Fuego for the whole range of surface activity observed at the volcano. We use data collected during temporary deployments in 2018 and from the permanent infrasound network. Infrasound at Fuego is dominated by the occurrence of short-duration acoustic transients linked to both ash-rich and gas-rich explosions, at times associated with the generation of shock waves. The rich acoustic record at Fuego includes broadband and harmonic tremor, and episodes of chugging. We explore the occurrence of these signals in relation to visual observations of surface activity, and we investigate their source mechanisms within the shallow conduit system. This study provides a reference for the interpretation of acoustic signals at Volcán de Fuego and a baseline for real-time monitoring of its eruptive activity using infrasound data. Our results suggest that changes in the style of activity and morphology of the summit crater are reflected in the acoustic signature of eruption; as such our study provides a reference for the interpretation of acoustic signals at Volcán de Fuego and a baseline for real-time monitoring of its eruptive activity using infrasound.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 Díaz Moreno, Roca, Lamur, Munkli, Ilanko, Pering, Pineda and De Angelis. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
Keywords: | acoustic infrasound; Volcán de Fuego; monitoring; Strombolian activity; paroxysmal activity |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Social Sciences (Sheffield) > Department of Geography (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 11 Dec 2020 16:45 |
Last Modified: | 11 Dec 2020 16:45 |
Status: | Published |
Publisher: | Frontiers Media SA |
Refereed: | Yes |
Identification Number: | 10.3389/feart.2020.549774 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:168853 |