Watson, C orcid.org/0000-0003-2656-961X, Kargel, J and Tiruwa, B (2019) UAV-Derived Himalayan Topography: Hazard Assessments and Comparison with Global DEM Products. Drones, 3 (1). 18. p. 18. ISSN 2504-446X
Abstract
Topography derived using human-portable unmanned aerial vehicles (UAVs) and structure from motion photogrammetry offers an order of magnitude improvement in spatial resolution and uncertainty over small survey extents, compared to global digital elevation model (DEM) products, which are often the only available choice of DEMs in the high-mountain Himalaya. Access to fine-resolution topography in the high mountain Himalaya is essential to assess where flood and landslide events present a risk to populations and infrastructure. In this study, we compare the topography of UAV-derived DEMs, three open-access global DEM products, and the 8 m High Mountain Asia (HMA) DEMs (released in December 2017) and assess their suitability for landslide- and flood-related hazard assessments. We observed close similarity between UAV and HMA DEMs when comparing terrain elevation, river channel delineation, landside volume, and landslide-dammed lake area and volume. We demonstrate the use of fine-resolution topography in a flood-modelling scenario relating to landslide-dammed lakes that formed on the Marsyangdi River following the 2015 Gorkha earthquake. We outline a workflow for using UAVs in hazard assessments and disaster situations to generate fine-resolution topography and facilitate real-time decision-making capabilities, such as assessing landslide-dammed lakes, mass movement volumes, and flood risk.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) |
Keywords: | unmanned aerial vehicles; structure from motion; digital elevation model; Himalaya; GDEM; SRTM; AW3D; landslides; hazards; flooding |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst of Geophysics and Tectonics (IGT) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 02 Dec 2020 15:35 |
Last Modified: | 02 Dec 2020 15:35 |
Status: | Published |
Publisher: | MDPI |
Identification Number: | 10.3390/drones3010018 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:168563 |