Escobar Steinvall, S, Ghisalberti, L, Zamani, RR et al. (9 more authors) (2020) Heterotwin Zn3P2 superlattice nanowires: the role of indium insertion in the superlattice formation mechanism and their optical properties. Nanoscale, 12. pp. 22534-22540. ISSN 2040-3364
Abstract
Zinc phosphide (Zn3P2) nanowires constitute prospective building blocks for next generation solar cells due to the combination of suitable optoelectronic properties and an abundance of the constituting elements in the Earth’s crust. The generation of periodic superstructures along the nanowire axis could provide an additional mechanism to tune their functional properties. Here we present the vapour–liquid–solid growth of zinc phosphide superlattices driven by periodic heterotwins. This uncommon planar defect involves the exchange of Zn by In at the twinning boundary. We find that the zigzag superlattice formation is driven by reduction of the total surface energy of the liquid droplet. The chemical variation across the heterotwin does not affect the homogeneity of the optical properties, as measured by cathodoluminescence. The basic understanding provided here brings new propsects on the use of II–V semiconductors in nanowire technology.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Royal Society of Chemistry 2020. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 27 Oct 2020 14:16 |
Last Modified: | 25 Jun 2023 22:28 |
Status: | Published |
Publisher: | Royal Society of Chemistry (RSC) |
Identification Number: | 10.1039/D0NR05852A |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:167208 |