Kuang, A. Q., Ballinger, S., Brunner, D. et al. (14 more authors) (2020) Divertor heat flux challenge and mitigation in SPARC. Journal of Plasma Physics. 865860505. ISSN 0022-3778
Abstract
Owing to its high magnetic field, high power, and compact size, the SPARC experiment will operate with divertor conditions at or above those expected in reactor-class tokamaks. Power exhaust at this scale remains one of the key challenges for practical fusion energy. Based on empirical scalings, the peak unmitigated divertor parallel heat flux is projected to be greater than 10 GW m-2. This is nearly an order of magnitude higher than has been demonstrated to date. Furthermore, the divertor parallel Edge-Localized Mode (ELM) energy fluence projections (∼11-34 MJ m-2) are comparable with those for ITER. However, the relatively short pulse length (∼25 s pulse, with a ∼10 s flat top) provides the opportunity to consider mitigation schemes unsuited to long-pulse devices including ITER and reactors. The baseline scenario for SPARC employs a ∼1 Hz strike point sweep to spread the heat flux over a large divertor target surface area to keep tile surface temperatures within tolerable levels without the use of active divertor cooling systems. In addition, SPARC operation presents a unique opportunity to study divertor heat exhaust mitigation at reactor-level plasma densities and power fluxes. Not only will SPARC test the limits of current experimental scalings and serve for benchmarking theoretical models in reactor regimes, it is also being designed to enable the assessment of long-legged and X-point target advanced divertor magnetic configurations. Experimental results from SPARC will be crucial to reducing risk for a fusion pilot plant divertor design.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s), 2020. |
Keywords: | fusion plasma,plasma devices |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Physics (York) |
Depositing User: | Pure (York) |
Date Deposited: | 20 Oct 2020 16:20 |
Last Modified: | 16 Oct 2024 17:01 |
Published Version: | https://doi.org/10.1017/S0022377820001117 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1017/S0022377820001117 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:166979 |
Download
Filename: divertor_heat_flux_challenge_and_mitigation_in_sparc.pdf
Description: divertor_heat_flux_challenge_and_mitigation_in_sparc
Licence: CC-BY-NC-ND 2.5