Haags, A, Rochford, LA, Felter, J et al. (4 more authors) (2020) Growth and evolution of tetracyanoquinodimethane and potassium coadsorption phases on Ag(111). New Journal of Physics, 22 (6). 063028. ISSN 1367-2630
Abstract
Alkali-doping is a very efficient way of tuning the electronic properties of active molecular layers in (opto-) electronic devices based on organic semiconductors. In this context, we report on the phase formation and evolution of charge transfer salts formed by 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ) in coadsorption with potassium on a Ag(111) surface. Based on an in-situ study using low energy electron microscopy and diffraction we identify the structural properties of four phases with different stoichiometries, and follow their growth and inter-phase transitions. We label these four phases α to δ, with increasing K content, the last two of which (γ and δ-phases) have not been previously reported. During TCNQ deposition on a K-precovered Ag(111) surface we find a superior stability of δ-phase islands compared to the γ-phase; continued TCNQ deposition leads to a direct transition from the δ to the β-phase when the K : TCNQ ratio corresponding to this phase regime is reached, with no intermediate γ-phase formation. When, instead, K is deposited on a surface precovered with large islands of the low density commensurate (LDC) TCNQ phase that are surrounded by a TCNQ 2D-gas, we observe two different scenarios: on the one hand, in the 2D-gas phase regions, very small α-phase islands are formed (close to the resolution limit of the microscope, 10–15 nm), which transform to β-phase islands of similar size with increasing K deposition. On the other hand, the large (micrometer-sized) TCNQ islands transform directly to similarly large single-domain β-phase islands, the formation of the intermediate α-phase being suppressed. This frustration of the LDC-to-α transition can be lifted by performing the experiment at elevated temperature. In this sense, the morphology of the pure TCNQ submonolayer is conserved during phase transitions.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Molecular & Nanoscale Physics |
Depositing User: | Symplectic Publications |
Date Deposited: | 11 Sep 2020 11:07 |
Last Modified: | 11 Sep 2020 11:07 |
Status: | Published |
Publisher: | IOP Publishing |
Identification Number: | 10.1088/1367-2630/ab825f |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:165277 |