Zhu, Z., Lou, S. and Majewski, C. orcid.org/0000-0003-3324-3511 (2020) Characterisation and correlation of areal surface texture with processing parameters and porosity of High Speed Sintered parts. Additive Manufacturing, 36. 101402. ISSN 2214-8604
Abstract
High Speed Sintering is an advanced powder bed fusion polymer Additive Manufacturing technique aimed at economical production of end-use parts in series manufacture. Surface finish is thus of high importance to end users. This study investigates the surface topography of High Speed Sintered parts produced using a range of different energy-related process parameters including sinter speed, lamp power and ink grey level. Areal surface texture was measured using Focus Variation microscopy and the sample porosity was systematically examined by the X-ray Computed Tomography technique. Surface topography was further characterised by Scanning Electron Microscopy, following which the samples were subject to tensile testing. Results showed that areal surface texture is strongly correlated with porosity, which can be further linked with mechanical properties. Certain texture parameters i.e. arithmetic mean height Sa, root-mean-square Sq and maximum valley depth Sv were identified as good indicators that can be used to compare porosity and/or mechanical properties between different samples, as well as distinguish up-, down-skins and side surfaces. Sa, Sq and Sv for up- and down-skins were found to correlate with the above energy-related process parameters. It was also revealed that skewness Ssk and kurtosis Sku are related to sphere-like protrusions, sub-surface porosity and re-entrant features. Energy input is the fundamental reason that causes varying porosity levels and consequently different surface topographies and mechanical properties, with a 10.07 μm and a 30.21 % difference in Sa and porosity, respectively, between the ‘low’ and ‘high’ energy input.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/). |
Keywords: | Additive manufacturing; High speed sintering; Areal surface texture; Porosity; X-ray computed tomography; Powder bed fusion |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Mechanical Engineering (Sheffield) |
Funding Information: | Funder Grant number Engineering and Physical Sciences Research Council EP/P006566/1 ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL EP/P006566/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 17 Jul 2020 10:57 |
Last Modified: | 11 Aug 2020 09:09 |
Status: | Published |
Publisher: | Elsevier BV |
Refereed: | Yes |
Identification Number: | 10.1016/j.addma.2020.101402 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:163374 |