Pieters, Z., Strong, M. orcid.org/0000-0003-1486-8233, Pitzer, V.E. et al. (2 more authors) (2020) A computationally efficient method for probabilistic parameter threshold analysis for health economic evaluations. Medical Decision Making, 40 (5). pp. 669-679. ISSN 0272-989X
Abstract
Background. Threshold analysis is used to determine the threshold value of an input parameter at which a health care strategy becomes cost-effective. Typically, it is performed in a deterministic manner, in which inputs are varied one at a time while the remaining inputs are each fixed at their mean value. This approach will result in incorrect threshold values if the cost-effectiveness model is nonlinear or if inputs are correlated. Objective. To propose a probabilistic method for performing threshold analysis, which accounts for the joint uncertainty in all input parameters and makes no assumption about the linearity of the cost-effectiveness model. Methods. Three methods are compared: 1) deterministic threshold analysis (DTA); 2) a 2-level Monte Carlo approach, which is considered the gold standard; and 3) a regression-based method using a generalized additive model (GAM), which identifies threshold values directly from a probabilistic sensitivity analysis sample. Results. We applied the 3 methods to estimate the minimum probability of hospitalization for typhoid fever at which 3 different vaccination strategies become cost-effective in Uganda. The threshold probability of hospitalization at which routine vaccination at 9 months with catchup campaign to 5 years becomes cost-effective is estimated to be 0.060 and 0.061 (95% confidence interval [CI], 0.058–0.064), respectively, for 2-level and GAM. According to DTA, routine vaccination at 9 months with catchup campaign to 5 years would never become cost-effective. The threshold probability at which routine vaccination at 9 months with catchup campaign to 15 years becomes cost-effective is estimated to be 0.092 (DTA), 0.074 (2-level), and 0.072 (95% CI, 0.069–0.075) (GAM). GAM is 430 times faster than the 2-level approach. Conclusions. When the cost-effectiveness model is nonlinear, GAM provides similar threshold values to the 2-level Monte Carlo approach and is computationally more efficient. DTA provides incorrect results and should not be used.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2020. This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
Keywords: | deterministic sensitivity analysis; Monte Carlo approach; probabilistic sensitivity analysis; probabilistic threshold analysis |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Health and Related Research (Sheffield) > ScHARR - Sheffield Centre for Health and Related Research |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 10 Jun 2020 10:26 |
Last Modified: | 05 Feb 2021 08:31 |
Status: | Published |
Publisher: | SAGE Publications |
Refereed: | Yes |
Identification Number: | 10.1177/0272989X20937253 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:161598 |